RESUMEN
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis1-3. Although Mtb can synthesize vitamin B12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter4-6; however, the gene rv1819c was found to be essential for uptake of cobalamin1. This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin7. In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 Å3, which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells8-11.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bleomicina/metabolismo , Mycobacterium tuberculosis/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de ProteínaRESUMEN
Uptake of vitamin B12 is essential for many prokaryotes, but in most cases the membrane proteins involved are yet to be identified. We present the biochemical characterization and high-resolution crystal structure of BtuM, a predicted bacterial vitamin B12 uptake system. BtuM binds vitamin B12 in its base-off conformation, with a cysteine residue as axial ligand of the corrin cobalt ion. Spectroscopic analysis indicates that the unusual thiolate coordination allows for decyanation of vitamin B12. Chemical modification of the substrate is a property other characterized vitamin B12-transport proteins do not exhibit.
Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Vitamina B 12/metabolismo , Proteínas Bacterianas/química , Biocatálisis , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Cinética , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Thiobacillus/metabolismo , Vitamina B 12/farmacologíaRESUMEN
This review focuses on a novel, evolutionarily conserved mediator of membrane protein assembly in bacteria, mitochondria and chloroplasts. This factor is designated YidC in Escherichia coli, and is localized in the inner membrane. YidC is homologous to Oxa1p in the mitochondrial inner membrane and Alb3 in the chloroplast thylakoid membrane, but does not seem to have a homologue in the endoplasmic reticulum membrane. It has been suggested that YidC operates both as a separate unit and in connection with the SecYEG-translocon depending on the substrate membrane protein that is integrated into the membrane. Mitochondria do not possess a SecYEG-like complex and Oxa1p is thought to form, or to contribute to the formation of, a novel translocon in the mitochondrial inner membrane. Alb3 in the chloroplast thylakoid membrane is, just like YidC and Oxa1p, involved in membrane protein assembly, but only few details are known.
Asunto(s)
Proteínas de Arabidopsis , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Proteínas de Escherichia coli , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Complejo IV de Transporte de Electrones , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Proteínas Mitocondriales , Transporte de Proteínas , Canales de Translocación SECRESUMEN
A Paracoccus denitrificans fbcC-ctaDII double mutant strain impaired in the synthesis of both the bc1 complex and the aa3-type oxidase has been constructed. This mutant strain, which is still able to grow on methylamine as sole carbon and energy source, exhibits unimpaired oxygen consumption with succinate, methylamine and endogenous substrates as electron donors. From kinetic studies of the oxidation and reduction rates of cytochromes c, it can be concluded that P. denitrificans contains a second cytochrome c oxidase, different from the aa3-type.
Asunto(s)
Complejo III de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/biosíntesis , Metilaminas/metabolismo , Mutación , Paracoccus denitrificans/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Genes Bacterianos , Cinética , Oxidación-Reducción , Consumo de Oxígeno , Paracoccus denitrificans/enzimología , Paracoccus denitrificans/genética , Espectrofotometría Ultravioleta , Especificidad por SustratoRESUMEN
Escherichia coli is one of the most widely used vehicles to overexpress membrane proteins (MPs). Currently, it is not possible to predict if an overexpressed MP will end up in the cytoplasmic membrane or in inclusion bodies. Overexpression of MPs in the cytoplasmic membrane is strongly favoured to overexpression in inclusion bodies, since it is relatively easy to isolate MPs from membranes and usually impossible to isolate them from inclusion bodies. Here we show that green fluorescent protein (GFP), when fused to an overexpressed MP, can be used as an indicator to monitor membrane insertion versus inclusion body formation of overexpressed MPs in E. coli. Furthermore, we show that an overexpressed MP can be recovered from a MP-GFP fusion using a site specific protease. This makes GFP an excellent tool for large-scale MP target selection in structural genomics projects.
Asunto(s)
Proteínas de la Cápside , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cápside/genética , Cápside/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/aislamiento & purificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratas , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificaciónRESUMEN
Research on the targeting of proteins to the cytoplasmic membrane of E. coli has mainly focused on the so-called 'general secretory pathway' (GSP) which involves the Sec-proteins. Recently, evidence has been obtained for an alternative targeting pathway in E. coli which involves the signal recognition particle (SRP). The constituents of this SRP pathway in E. coli are homologous to those of the well-characterized eukaryotic SRP pathway, which is the main targeting pathway for both proteins translocated across and inserted into the endoplasmic reticulum membrane. However, until recently, no clear function could be assigned to the SRP in E. coli. New studies point to an important role of the E. coli SRP in the assembly of inner membrane proteins.
Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Escherichia coli/química , Células Eucariotas/metabolismoRESUMEN
The SecE protein is an essential component of the SecAYE-translocase, which mediates protein translocation across the cytoplasmic membrane in bacteria. In the thylakoid membranes of chloroplasts, a protein homologous to SecE, chloroplastic (cp) SecE, has been identified. However, the functional role of cpSecE has not been established experimentally. In this report we show that cpSecE in cells depleted for bacterial SecE (i) supports growth, (ii) stabilizes, just like bacterial SecE, the Sec-translocase core component SecY, and (iii) supports Sec-dependent protein translocation. This indicates that cpSecE can functionally replace bacterial SecE in vivo, and strongly suggests that the thylakoid membrane contains a SecAYE-like translocase with functional and structural similarities to the bacterial complex. This study further underscores the evolutionary link between chloroplasts and bacteria.
Asunto(s)
Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Prueba de Complementación Genética , Proteínas de Transporte de Membrana , Adenosina Trifosfatasas , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Proteínas Portadoras , Cloroplastos/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Datos de Secuencia Molecular , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Homología de Secuencia de AminoácidoRESUMEN
Targeting of the cytoplasmic membrane protein leader peptidase (Lep) and a Lep mutant (Lep-inv) that inserts with an inverted topology compared to the wild-type protein was studied in Escherichia coli strains that are conditional for the expression of either Ffh or 4.5S RNA, the two components of the E. coli SRP. Depletion of either component strongly affected the insertion of both Lep and Lep-inv into the cytoplasmic membrane. This indicates that SRP is required for the assembly of cytoplasmic membrane proteins in E. coli.
Asunto(s)
Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Partícula de Reconocimiento de Señal/metabolismoRESUMEN
In Paracoccus denitrificans four classes of redox proteins are involved in the electron transfer from methylamine to oxygen:methylamine dehydrogenase (MADH), amicyanin, cytochrome c and cytochrome c oxidase. MADH and its electron acceptor amicyanin are indispensable for growth on methylamine. At least three different cytochromes c and two types of cytochrome c oxidase, cytochromes aa3 and cbb3, have previously been proposed to participate in the electron transfer pathways from methylamine to oxygen. In this study, participation of both cytochrome c oxidases and of the quinol oxidase (cytochrome bb3) has indeed been confirmed by analysis of a series of oxidase mutants. Interestingly, a P. denitrificans cytochrome c oxidase mutant (delta aa3/cbb3) retains the capacity to oxidise methylamine. It is demonstrated that the oxidation of the cytochrome c pool in this mutant does not proceed via an alternative cytochrome c oxidase, but rather via an 'uphill' electron transfer through the bc1 complex to ubiquinone, driven by the membrane potential. The subsequent oxidation of ubiquinol proceeds via the only remaining terminal oxidase, the bb3-type quinol oxidase.
Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Transporte de Electrón , Metilaminas/metabolismo , Paracoccus denitrificans/enzimología , Medios de Cultivo , Complejo IV de Transporte de Electrones/genética , Metanol/metabolismo , Mutación , Oxidorreductasas/metabolismo , Paracoccus denitrificans/crecimiento & desarrolloRESUMEN
Among aerobic prokaryotes, many different terminal oxidase complexes have been described. Sequence comparison has revealed that the aa3-type cytochrome c oxidase and the bo3-type quinol oxidase are variations on the same theme: the heme-copper oxidase. A third member of this family has recently been recognized: the cbb3-type cytochrome c oxidase. Here we give an overview, and report that nitric oxide (NO) reductase, a bc-type cytochrome involved in denitrification, shares important features with these terminal oxidases as well. Tentative structural, functional and evolutionary implications are discussed.
Asunto(s)
Proteínas Bacterianas/clasificación , Cobre , Hemoproteínas/clasificación , Metaloproteínas/clasificación , Oxidorreductasas/clasificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Complejo IV de Transporte de Electrones/clasificación , Hemoproteínas/química , Metaloproteínas/química , Datos de Secuencia Molecular , Oxidorreductasas/químicaRESUMEN
The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 Å) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 Å, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides.
Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Oligopéptidos/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas Portadoras/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Immunoblotting , Lipoproteínas/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Salmonella typhimurium/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por SustratoRESUMEN
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de la Membrana/química , Pliegue de Proteína , Transporte de ProteínasRESUMEN
The pCloDF13-encoded bacteriocin release protein (BRP) is a lipoprotein which is synthesized as a precursor with an amino-terminal signal peptide that appears to be stable after cleavage. The role of the stable signal peptide in the functioning of the BRP was studied with respect to the release of cloacin DF13, 'lysis' and leakage of periplasmic proteins. The BRP gene fragment encoding the stable signal peptide was replaced by a fragment encoding the unstable peptide of the murein lipoprotein (Lpp). The resulting hybrid protein was normally acylated and processed by signal peptidase II, leaving no stable signal peptide in the cells. Expression of the hybrid protein did not result in the specific release of cloacin DF13, whereas 'lysis' and the release of periplasmic enzymes were unaffected. These results indicated a role for the stable BRP signal peptide in the translocation of cloacin DF13 across the cytoplasmic membrane.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriocinas/metabolismo , Proteínas de Escherichia coli , Señales de Clasificación de Proteína/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Clonación Molecular , ADN Bacteriano , Escherichia coli/genética , Datos de Secuencia Molecular , Mutagénesis , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
We have characterized the membrane topology of a 60-kDa inner membrane protein from Escherichia coli that is homologous to the recently identified Oxa1p protein in Saccharomyces cerevisiae mitochondria implicated in the assembly of mitochondrial inner membrane proteins. Hydrophobicity and alkaline phosphatase fusion analyses suggest a membrane topology with six transmembrane segments, including an N-terminal signal-anchor sequence not present in mitochondrial Oxa1p. In contrast to partial N-terminal fusion protein constructs, the full-length protein folds into a protease-resistant conformation, suggesting that important folding determinants are present in the C-terminal part of the molecule.
Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/enzimología , Proteínas Nucleares/química , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Quinasas Ciclina-Dependientes/metabolismo , Endopeptidasa K/metabolismo , Proteínas de Escherichia coli , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Datos de Secuencia Molecular , Peso Molecular , Proteínas Nucleares/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae , Propiedades de SuperficieRESUMEN
ProW is an Escherichia coli inner membrane protein that consists of a 100-residue-long periplasmic N-terminal tail (N-tail) followed by seven closely spaced transmembrane segments. N-tail translocation presumably proceeds in a C-to-N-terminal direction and represents a poorly understood aspect of membrane protein biogenesis. Here, using an in vivo depletion approach, we show that N-tail translocation in a ProW derivative comprising the N-tail and the first transmembrane segment fused to the globular P2 domain of leader peptidase depends both on the bacterial signal recognition particle (SRP) and the Sec-translocase. Surprisingly, however, a deletion construct with only one transmembrane segment downstream of the N-tail can assemble properly even under severe depletion of SecE, a central component of the Sec-translocase, but not under SRP-depletion conditions. To our knowledge, this is the first demonstration that the SRP-targeting pathway does not necessarily deliver SRP-dependent inner membrane proteins to the Sec-translocase. The data further suggest that N-tail translocation can proceed in the absence of a functional Sec-translocase.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas , Proteínas de Escherichia coli , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transporte Biológico , Proteínas de la Membrana/químicaRESUMEN
Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.
Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Señales de Clasificación de Proteína/metabolismo , Secuencia de Aminoácidos , Arginina/genética , Arginina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Endopeptidasa K , Escherichia coli/genética , Glicina/genética , Glicina/metabolismo , Cinética , Leucina/genética , Leucina/metabolismo , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Periplasma/química , Periplasma/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/química , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Esferoplastos/metabolismoRESUMEN
The in vivo oxidation of methylamine has been studied in Paracoccus denitrificans. Four components are involved in the electron transfer from methylamine to oxygen; methylamine dehydrogenase (MADH), amicyanin, cytochrome c and cytochrome-c oxidase. In P. denitrificans, MADH and its electron acceptor amicyanin are indispensable for growth on methylamine. In the present study, site-directed mutants have been used to demonstrate participation of cytochrome c550 and the aa3-type cytochrome-c oxidase. Moreover, evidence is provided for the operation of alternative routes, branching from amicyanin, in which at least cytochrome c1 and the cbb3-type cytochrome-c oxidase are involved.
Asunto(s)
Metilaminas/metabolismo , Paracoccus denitrificans/metabolismo , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Paracoccus denitrificans/genéticaRESUMEN
The membrane insertion of the Sec-independent M13 Procoat protein in bacteria requires the membrane electrochemical potential and the integral membrane protein YidC. We show here that YidC is involved in the translocation but not in the targeting of the Procoat protein, because we found the protein was partitioned into the membrane in the absence of YidC. YidC can function also to promote membrane insertion of Procoat mutants that insert independently of the membrane potential, proving that the effect of YidC depletion is not due to a dissipation of the membrane potential. We also found that YidC is absolutely required for Sec-dependent translocation of a long periplasmic loop of a mutant Procoat in which the periplasmic region has been extended from 20 to 194 residues. Furthermore, when Sec-dependent membrane proteins with large periplasmic domains were overproduced under YidC-limited conditions, we found that the exported proteins pro-OmpA and pre-peptidoglycan-associated lipoprotein accumulated in the cytoplasm. This suggests for Sec-dependent proteins that YidC functions at a late stage in membrane insertion, after the Sec translocase interacts with the translocating membrane protein. These studies are consistent with the understanding that YidC cooperates with the Sec translocase for membrane translocation and that YidC is required for clearing the protein-conducting channel.
Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/fisiología , Proteínas de la Cápside , Cápside/metabolismo , Proteínas Portadoras/fisiología , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana , Precursores de Proteínas/metabolismo , Transporte Biológico , Potenciales de la Membrana , Canales de Translocación SEC , Proteína SecARESUMEN
The Escherichia coli signal recognition particle (SRP) and trigger factor are cytoplasmic factors that interact with short nascent polypeptides of presecretory and membrane proteins produced in a heterologous in vitro translation system. In this study, we use an E. coli in vitro translation system in combination with bifunctional cross-linking reagents to investigate these interactions in more detail in a homologous environment. Using this approach, the direct interaction of SRP with nascent polypeptides that expose particularly hydrophobic targeting signals is demonstrated, suggesting that inner membrane proteins are the primary physiological substrate of the E. coli SRP. Evidence is presented that the overproduction of proteins that expose hydrophobic polypeptide stretches, titrates SRP. In addition, trigger factor is efficiently cross-linked to nascent polypeptides of different length and nature, some as short as 57 amino acid residues, indicating that it is positioned near the nascent chain exit site on the E. coli ribosome.
Asunto(s)
Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Proteínas Bacterianas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Escherichia coli/metabolismo , Fotoquímica , Porinas/metabolismo , Ribosomas/metabolismoRESUMEN
Assembly of several inner membrane proteins-leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep-has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.