Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Radiother Oncol ; 189: 109932, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778533

RESUMEN

This work reports on the first seven patients treated with gating and baseline drift correction on the high-field MR-Linac system. Dosimetric analysis showed that the active motion management system improved congruence to the planned dose, efficiently mitigating detrimental effects of intrafraction motion in the upper abdomen.


Asunto(s)
Neoplasias Abdominales , Radioterapia de Intensidad Modulada , Humanos , Movimiento , Movimiento (Física) , Radiometría , Neoplasias Abdominales/radioterapia , Planificación de la Radioterapia Asistida por Computador
2.
Pract Radiat Oncol ; 13(3): e261-e269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36462619

RESUMEN

PURPOSE: Magnetic resonance (MR)-guided radiation therapy (MRgRT) is a new technique for treatment of localized prostate cancer (PCa). We report the 12-month outcomes for the first PCa patients treated within an international consortium (the MOMENTUM study) on a 1.5T MR-Linac system with ultrahypofractionated radiation therapy. METHODS AND MATERIALS: Patients treated with 5 × 7.25 Gy were identified. Prostate specific antigen-level, physician-reported toxicity (Common Terminology Criteria for Adverse Events [CTCAE]), and patient-reported outcomes (Quality of Life Questionnaire PR25 and Quality of Life Questionnaire C30 questionnaires) were recorded at baseline and at 3, 6, and 12 months of follow-up (FU). Pairwise comparative statistics were conducted to compare outcomes between baseline and FU. RESULTS: The study included 425 patients with localized PCa (11.4% low, 82.0% intermediate, and 6.6% high-risk), and 365, 313, and 186 patients reached 3-, 6-, and 12-months FU, respectively. Median prostate specific antigen level declined significantly to 1.2 ng/mL and 0.1 ng/mL at 12 months FU for the nonandrogen deprivation therapy (ADT) and ADT group, respectively. The peak of genitourinary and gastrointestinal CTCAE toxicity was reported at 3 months FU, with 18.7% and 1.7% grade ≥2, respectively. The QLQ-PR25 questionnaire outcomes showed significant deterioration in urinary domain score at all FU moments, from 8.3 (interquartile range [IQR], 4.1-16.6) at baseline to 12.4 (IQR, 8.3-24.8; P = .005) at 3 months, 12.4 (IQR, 8.3-20.8; P = .018;) at 6 months, and 12.4 (IQR, 8.3-20.8; P = .001) at 12 months. For the non-ADT group, physician- and patient-reported erectile function worsened significantly between baseline and 12 months FU. CONCLUSIONS: Ultrahypofractionated MR-guided radiation therapy for localized PCa using a 1.5T MR-Linac is effective and safe. The peak of CTCAE genitourinary and gastrointestinal toxicity was reported at 3 months FU. Furthermore, for patients without ADT, a significant increase in CTCAE erectile dysfunction was reported at 12 months FU. These data are useful for educating patients on expected outcomes and informing study design of future comparative-effectiveness studies.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Masculino , Humanos , Antígeno Prostático Específico , Calidad de Vida , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia Guiada por Imagen/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Espectroscopía de Resonancia Magnética , Sistema de Registros
3.
Phys Imaging Radiat Oncol ; 24: 43-46, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36148156

RESUMEN

Neurovascular bundle (NVB) and internal pudendal artery (IPA) sparing during magnetic resonance-guided radiotherapy (MRgRT) for prostate cancer aims for preservation of erectile function. Our present workflow involves daily online contouring and re-planning on a 1.5 T MR-linac, as alternative to conventional (rigid) translation-only corrections of the prostate. We compared planned dose for the NVB and IPA between strategies. Total planned dose was significantly lower with daily online contouring and re-planning for the NVB, but not for the IPA. For the NVB and IPA, the intrapatient difference between highest and lowest fraction dose was significantly smaller for the contouring and re-planning plans.

4.
Phys Imaging Radiat Oncol ; 19: 90-95, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34377842

RESUMEN

BACKGROUND AND PURPOSE: In daily adaptive magnetic resonance (MR)-guided radiotherapy, plans are adapted based on the patient's daily anatomy. During this adaptation phase, prostate intrafraction motion (IM) can occur. The aim of this study was to investigate the efficacy of always applying a subsequent virtual couch shift (VCS) to counter IM that occurred during the daily contour and plan adaption (CPa) procedure. MATERIAL AND METHODS: One hundred fifty patients with low and intermediate risk prostate cancer were treated with 5x7.25 Gy fractions on a 1.5 T MR-Linac. In each fraction, contour adaptation and dose re-optimization was performed using the session's first MR-scan. IM that occurred here was countered using two methods. One patient group had selective VCS (sVCS) applied if the CTV reached outside the PTV on a second MR acquired during plan optimization. The other group had always VCS (aVCS) applied for any prostate shift greater than 1 mm. Remaining IM during beam delivery was determined using 3D cine-MR. RESULTS: Percentage of fractions where a VCS was applied was 28% (sVCS) vs 78% (aVCS). Always applying VCS significantly reduced influences of systematic prostate IM. Population random and systematic median values in all translations directions were lower for the aVCS than sVCS group, but not for the population random cranial-caudal direction. CONCLUSION: Applying VCS after daily CPa reduced impact of systematic prostate drift in especially the posterior and caudal translation direction. However, due to the continuous and stochastical nature of prostate IM, margin reduction below 4 mm requires fast intrafraction plan adaption methods.

5.
Phys Imaging Radiat Oncol ; 20: 5-10, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34604553

RESUMEN

BACKGROUND AND PURPOSE: Erectile dysfunction is a common adverse effect of external beam radiation therapy for localized prostate cancer (PCa), likely as a result of damage to neural and vascular tissue. Magnetic resonance-guided online adaptive radiotherapy (MRgRT) enables high-resolution MR imaging and paves the way for neurovascular-sparing approaches, potentially lowering erectile dysfunction after radiotherapy for PCa. The aim of this study was to assess the planning feasibility of neurovascular-sparing MRgRT for localized PCa. MATERIALS AND METHODS: Twenty consecutive localized PCa patients, treated with standard 5×7.25 Gy MRgRT, were included. For these patients, neurovascular-sparing 5×7.25 Gy MRgRT plans were generated. Dose constraints for the neurovascular bundle (NVB), the internal pudendal artery (IPA), the corpus cavernosum (CC), and the penile bulb (PB) were established. Doses to regions of interest were compared between the neurovascular-sparing plans and the standard clinical pre-treatment plans. RESULTS: Neurovascular-sparing constraints for the CC, and PB were met in all 20 patients. For the IPA, constraints were met in 19 (95%) patients bilaterally and 1 (5%) patient unilaterally. Constraints for the NVB were met in 8 (40%) patients bilaterally, in 8 (40%) patients unilaterally, and were not met in 4 (20%) patients. NVB constraints were not met when gross tumor volume (GTV) was located dorsolaterally in the prostate. Dose to the NVB, IPA, and CC was significantly lower in the neurovascular-sparing plans. CONCLUSIONS: Neurovascular-sparing MRgRT for localized PCa is feasible in the planning setting. The extent of NVB sparing largely depends on the patient's GTV location in relation to the NVB.

6.
Phys Imaging Radiat Oncol ; 15: 23-29, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33458322

RESUMEN

BACKGROUND AND PURPOSE: Monitoring the intrafraction motion and its impact on the planned dose distribution is of crucial importance in radiotherapy. In this work we quantify the delivered dose for the first prostate patients treated on a combined 1.5T Magnetic Resonance Imaging (MRI) and linear accelerator system in our clinic based on online 3D cine-MR and treatment log files. MATERIALS AND METHODS: A prostate intrafraction motion trace was obtained with a soft-tissue based rigid registration method with six degrees of freedom from 3D cine-MR dynamics with a temporal resolution of 8.5-16.9 s. For each fraction, all dynamics were also registered to the daily MR image used during the online treatment planning, enabling the mapping to this reference point. Moreover, each fraction's treatment log file was used to extract the timestamped machine parameters during delivery and assign it to the appropriate dynamic volume. These partial plans to dynamic volume combinations were calculated and summed to yield the delivered fraction dose. The planned and delivered dose distributions were compared among all patients for a total of 100 fractions. RESULTS: The clinical target volume underwent on average a decrease of 2.2% ± 2.9% in terms of D99% coverage while bladder V62Gy was increased by 1.6% ± 2.3% and rectum V62Gy decreased by 0.2% ± 2.2%. CONCLUSIONS: The first MR-linac dose reconstruction results based on prostate tracking from intrafraction 3D cine-MR and treatment log files are presented. Such a pipeline is essential for online adaptation especially as we progress to MRI-guided extremely hypofractionated treatments.

7.
Phys Imaging Radiat Oncol ; 11: 16-20, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33458271

RESUMEN

BACKGROUND AND PURPOSE: Recently, intermediate and high-risk prostate cancer patients have been treated in a multicenter phase II trial with extremely hypofractionated prostate radiotherapy (hypo-FLAME trial). The purpose of the current study was to investigate whether a 1.5 T magnetic resonance imaging guided linear accelerator (MRI-linac) could achieve complex dose distributions of a quality similar to conventional linac state-of-the-art prostate treatments. MATERIALS AND METHODS: The clinically delivered treatment plans of 20 hypo-FLAME patients (volumetric modulated arc therapy, 10 MV, 5 mm leaf width) were included. Prescribed dose to the prostate was 5 × 7 Gy, with a focal tumor boost up to 5 × 10 Gy. MRI-linac treatment plans (intensity modulated radiotherapy, 7 MV, 7 mm leaf width, fixed collimator angle and 1.5 T magnetic field) were calculated. Dose distributions were compared. RESULTS: In both conventional and MRI-linac treatment plans, the V35Gy to the whole prostate was >99% in all patients. Mean dose to the gross tumor volume was 45 Gy for conventional and 44 Gy for MRI-linac plans, respectively. Organ at risk doses were met in the majority of plans, except for a rectal V35Gy constraint, which was exceeded in one patient, by 1 cc, for both modalities. The bladder V32Gy and V28Gy constraints were exceeded in two and one patient respectively, for both modalities. CONCLUSION: Planning of stereotactic radiotherapy with focal ablative boosting in prostate cancer on a high field MRI-linac is feasible with the current MRI-linac properties, without deterioration of plan quality compared to conventional treatments.

8.
Radiother Oncol ; 134: 50-54, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31005224

RESUMEN

Online adaptive radiotherapy using the 1.5 Tesla MR-linac is feasible for SBRT (5 × 7 Gy) of pelvic lymph node oligometastases. The workflow allows full online planning based on daily anatomy. Session duration is less than 60 min. Quality assurance tests, including independent 3D dose calculations and film measurements were passed.


Asunto(s)
Ganglios Linfáticos/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Radiocirugia/instrumentación , Estudios de Factibilidad , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Metástasis Linfática , Imagen por Resonancia Magnética/métodos , Masculino , Aceleradores de Partículas , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Radiocirugia/métodos , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/métodos
9.
Clin Transl Radiat Oncol ; 18: 54-59, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31341976

RESUMEN

BACKGROUND AND PURPOSE: The promise of the MR-linac is that one can visualize all anatomical changes during the course of radiotherapy and hence adapt the treatment plan in order to always have the optimal treatment. Yet, there is a trade-off to be made between the time spent for adapting the treatment plan against the dosimetric gain. In this work, the various daily plan adaptation methods will be presented and applied on a variety of tumour sites. The aim is to provide an insight in the behavior of the state-of-the-art 1.5 T MRI guided on-line adaptive radiotherapy methods. MATERIALS AND METHODS: To explore the different available plan adaptation workflows and methods, we have simulated online plan adaptation for five cases with varying levels of inter-fraction motion, regions of interest and target sizes: prostate, rectum, esophagus and lymph node oligometastases (single and multiple target). The plans were evaluated based on the clinical dose constraints and the optimization time was measured. RESULTS: The time needed for plan adaptation ranged between 17 and 485 s. More advanced plan adaptation methods generally resulted in more plans that met the clinical dose criteria. Violations were often caused by insufficient PTV coverage or, for the multiple lymph node case, a too high dose to OAR in the vicinity of the PTV. With full online replanning it was possible to create plans that met all clinical dose constraints for all cases. CONCLUSION: Daily full online replanning is the most robust adaptive planning method for Unity. It is feasible for specific sites in clinically acceptable times. Faster methods are available, but before applying these, the specific use cases should be explored dosimetrically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA