Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimmunomodulation ; 31(1): 114-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38631323

RESUMEN

INTRODUCTION: Emerging studies highlight the telomere system as an aging mechanism underlying the association between exposure to psychological trauma and the development of a wide range of physical and mental disorders, including major depressive disorder (MDD). Here, we investigated associations of circulating levels of the steroid hormone dehydroepiandrosterone (DHEA) with immune cell telomere length (TL) in the context of lifetime trauma exposure and MDD. METHODS: Lifetime traumatic events (trauma load) were assessed using the Essener Trauma Inventory in n = 22 postmenopausal female inpatients with MDD and n = 22 non-depressed controls. All women completed the Beck's Depression Inventory II to assess the severity of current depressive symptoms. DHEA concentration in serum was measured by immunoassay, and TL was quantified in kilobase units using quantitative fluorescent in situ hybridization in total peripheral blood mononuclear cells (PBMC) and in selected T-cell subpopulations isolated by FACS separation. RESULTS: Higher trauma load was significantly associated with lower DHEA concentration, which in turn was linked to more depression-related fatigue. Furthermore, DHEA concentration was positively and significantly associated with TL in memory CD4+ T cells as well as in naïve and memory CD8+ T cells, but not in naïve CD4+ T cells and total PBMC. Mediational analysis suggested that DHEA concentration is a mediator in the relationship between trauma load and memory CD8+ T-cell TL. CONCLUSION: The current findings suggest a potential role of DHEA as a biological resilience factor that may exert beneficial effects on telomere integrity, especially in conditions related to distress.


Asunto(s)
Deshidroepiandrosterona , Trastorno Depresivo Mayor , Trauma Psicológico , Telómero , Humanos , Femenino , Deshidroepiandrosterona/sangre , Persona de Mediana Edad , Trastorno Depresivo Mayor/sangre , Anciano , Trauma Psicológico/sangre
2.
Nature ; 530(7590): 340-3, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26863187

RESUMEN

Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and 'plasma membrane dilution' through cell division shape the epithelial Wnt3 gradient.


Asunto(s)
Membrana Celular/metabolismo , Mucosa Intestinal/citología , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo , Vía de Señalización Wnt , Proteína Wnt3/metabolismo , Alelos , Animales , Adhesión Celular , División Celular , Difusión , Femenino , Receptores Frizzled/metabolismo , Técnicas de Sustitución del Gen , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , Células de Paneth/citología , Células de Paneth/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Wnt3/genética
3.
Dev Psychopathol ; 32(5): 1725-1731, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33427162

RESUMEN

Exposure to child maltreatment increases the risk for psychiatric and physical diseases. Inflammation has been proposed as a mechanism through which early adverse experiences become biologically embedded. However, most studies providing evidence for the link between early adverse exposures and inflammation have been retrospective or cross-sectional in design, or did not assess inflammation immediately after maltreatment in young children. In the present study we investigated the association between childhood maltreatment and salivary C-reactive protein (CRP) concentrations in a population of N = 173 children, 3-5 years of age, who were recruited in the immediate aftermath of maltreatment and followed-up longitudinally every 6 months over a period of 2 years. We found that the association between maltreatment and CRP concentrations was significantly moderated by child sex, such that in girls, CRP concentrations were higher in the maltreated compared to the control group, and this difference was stable across the 2-year follow-up-period, while in boys, there was no association between maltreatment and CRP. Our findings suggest that the effect of maltreatment on inflammation may already emerge right after exposure at a very young age in girls and manifest over time. Our study provides important evidence for the development of personalized, early interventions strategies targeting the early-life period.


Asunto(s)
Maltrato a los Niños , Proteína C-Reactiva , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Inflamación , Masculino , Estudios Retrospectivos
4.
Appl Environ Microbiol ; 80(18): 5854-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038093

RESUMEN

Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


Asunto(s)
Antígenos Bacterianos/metabolismo , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretoras/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Transporte de Proteínas , Salmonella typhimurium/genética
5.
Microb Cell Fact ; 13: 162, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25421093

RESUMEN

BACKGROUND: The Autotransporter pathway, ubiquitous in Gram-negative bacteria, allows the efficient secretion of large passenger proteins via a relatively simple mechanism. Capitalizing on its crystal structure, we have engineered the Escherichia coli autotransporter Hemoglobin protease (Hbp) into a versatile platform for secretion and surface display of multiple heterologous proteins in one carrier molecule. RESULTS: As proof-of-concept, we demonstrate efficient secretion and high-density display of the sizeable Mycobacterium tuberculosis antigens ESAT6, Ag85B and Rv2660c in E. coli simultaneously. Furthermore, we show stable multivalent display of these antigens in an attenuated Salmonella Typhimurium strain upon chromosomal integration. To emphasize the versatility of the Hbp platform, we also demonstrate efficient expression of multiple sizeable antigenic fragments from Chlamydia trachomatis and the influenza A virus at the Salmonella cell surface. CONCLUSIONS: The successful efficient cell surface display of multiple antigens from various pathogenic organisms highlights the potential of Hbp as a universal platform for the development of multivalent recombinant bacterial vector vaccines.


Asunto(s)
Antígenos Bacterianos , Antígenos Virales , Sistemas de Secreción Bacterianos , Vacunas Bacterianas , Endopeptidasas , Escherichia coli , Vacunas contra la Influenza , Salmonella typhimurium , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Antígenos Virales/genética , Antígenos Virales/metabolismo , Vacunas Bacterianas/genética , Vacunas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/metabolismo , Mycobacterium tuberculosis/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
6.
J Bacteriol ; 195(9): 2050-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23457249

RESUMEN

A striking characteristic of mycobacteria is the presence of an unusual outer membrane which forms a thick permeability barrier and provides resistance to many antibiotics. Although specialized proteins must reside in this layer, only few mycolate outer membrane (MOM) proteins have been identified to date. Their discovery is complicated by difficulties in obtaining good separation of mycobacterial inner and outer membranes. During our efforts to identify novel mycobacterial outer membrane proteins (MOMPs), we discovered that we can enrich for MOMPs using differential solubilization of mycobacterial cell envelopes. Subsequently, these different fractions were analyzed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). This proteomic analysis confirmed that our marker proteins for inner membrane and MOM were found in their expected fractions and revealed a few interesting candidate MOMPs. A number of these putative MOMPs were further analyzed for their expression and localization in the cell envelope. One identified MOMP, MMAR_0617 of Mycobacterium marinum, was purified and demonstrated to form a large oligomeric complex. Importantly, this protein showed a clear single-channel conductance of 0.8 ± 0.1 ns upon reconstitution into artificial planar lipid bilayers. The most surprising feature of MMAR_0617 is a long C-terminal threonine-rich domain with extensive modifications. In summary, we have identified a novel mycobacterial outer membrane porin with unusual properties.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Mycobacterium marinum/metabolismo , Porinas/metabolismo , Treonina/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Membrana Celular/química , Membrana Celular/genética , Detergentes/química , Datos de Secuencia Molecular , Mycobacterium marinum/química , Mycobacterium marinum/genética , Porinas/química , Porinas/genética , Porinas/aislamiento & purificación , Estructura Terciaria de Proteína , Alineación de Secuencia , Treonina/análisis
7.
Cell Microbiol ; 14(5): 728-39, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22256857

RESUMEN

ESX-5 is a mycobacterial type VII protein secretion system responsible for transport of numerous PE and PPE proteins. It is involved in the induction of host cell death and modulation of the cytokine response in vitro. In this work, we studied the effects of ESX-5 in embryonic and adult zebrafish using Mycobacterium marinum. We found that ESX-5-deficient M. marinum was slightly attenuated in zebrafish embryos. Surprisingly, the same mutant showed highly increased virulence in adult zebrafish, characterized by increased bacterial loads and early onset of granuloma formation with rapid development of necrotic centres. This early onset of granuloma formation was accompanied by an increased expression of pro-inflammatory cytokines and tissue remodelling genes in zebrafish infected with the ESX-5 mutant. Experiments using RAG-1-deficient zebrafish showed that the increased virulence of the ESX-5 mutant was not dependent on the adaptive immune system. Mixed infection experiments with wild-type and ESX-5 mutant bacteria showed that the latter had a specific advantage in adult zebrafish and outcompeted wild-type bacteria. Together our experiments indicate that ESX-5-mediated protein secretion is used by M. marinum to establish a moderate and persistent infection.


Asunto(s)
Eliminación de Gen , Interacciones Huésped-Patógeno , Mycobacterium marinum/genética , Mycobacterium marinum/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Pez Cebra/microbiología , Animales , Carga Bacteriana , Citocinas/biosíntesis , Perfilación de la Expresión Génica , Granuloma/patología , Necrosis/patología , Virulencia
8.
Cell Microbiol ; 14(8): 1287-98, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22524898

RESUMEN

Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence.


Asunto(s)
Citoplasma/microbiología , Mycobacterium/patogenicidad , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular , Técnicas de Sustitución del Gen , Interacciones Huésped-Patógeno , Humanos , Lisosomas/microbiología , Lisosomas/ultraestructura , Mycobacterium/genética , Mycobacterium/metabolismo , Fagosomas/microbiología , Fagosomas/ultraestructura , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
J Immunol ; 187(9): 4744-53, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21957139

RESUMEN

During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1ß activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Inflamasomas/inmunología , Inflamasomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium marinum/inmunología , Mycobacterium tuberculosis/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Muerte Celular/inmunología , Línea Celular , Línea Celular Tumoral , Humanos , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Interleucina-1beta/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Ratones , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/patogenicidad
10.
Psychoneuroendocrinology ; 153: 106120, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37104965

RESUMEN

Exposure to various forms of stress has been associated with shorter telomere length (TL). However, the molecular underpinnings of this effect are poorly understood. Based on an understanding of the key role of the reverse transcriptase enzyme telomerase in regulating TL, and building upon our previous work in developing and validating a biomarker of the capacity of cells to express telomerase (maximal telomerase activity capacity (mTAC)), we examine here the hypotheses that mTAC is positively associated with TL and that the effect of stress on TL is mediated by individual differences in mTAC. In a proof-of-principle study of 28 healthy women and men we quantified the cortisol response to a standardized stress challenge, the Trier Social Stress Test (TSST), and we concurrently assessed peripheral blood mononuclear cell (PBMC) mTAC and TL. Our results indicated that higher mTAC levels were associated with longer TL (r = 0.50, p = .01). Moreover, mediational analysis suggested that the effect of the cortisol stress response on TL was mediated by mTAC (completely standardized ß = -0.17, bootstrap CI95 %: -0.44 to -0.01). Thus, our findings support the premise that individual differences in the capacity of cells to up-regulate telomerase may represent a key mediator in the link between stress and TL.


Asunto(s)
Telomerasa , Masculino , Humanos , Femenino , Telomerasa/metabolismo , Leucocitos Mononucleares/metabolismo , Hidrocortisona , Telómero/metabolismo
11.
Psychoneuroendocrinology ; 155: 106325, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385089

RESUMEN

NUCB2/nesfatin-1 is an anorexigenic peptide hormone first known for its effects on energy homeostasis. More recently, a growing evidence suggests a role of NUCB2/nesfatin-1 in emotion regulation, particularly in the modulation of anxiety, depression and emotional stress response. Since stress-related mood disorders are often comorbid with obesity, we investigated the effect of acute psychosocial stress on circulating NUCB2/nesfatin-1 in obese women and normal-weight controls and its association with symptoms of anxiety. Forty women, 20 obese and 20 normal-weight controls, (aged between 27 and 46 years) were exposed to the Trier Social Stress Test (TSST). We assessed changes of plasma NUCB2/nesfatin-1, salivary cortisol, heart rate and subjective emotional state. Symptoms of anxiety (GAD-7), depressiveness (PHQ-9), perceived stress (PSQ-20), disordered eating (EDE-Q, EDI-2) and health-related quality of life (SF-8) were measured psychometrically. Obese women were further subdivided in a high and low anxiety group. Women with obesity displayed higher psychopathology compared to normal-weight controls. The TSST induced a biological and psychological stress response in both groups (p < 0.001). In normal-weight controls NUCB2/nesfatin-1 increased in response to stress (p = 0.011) and decreased during recovery (p < 0.050), while in obese women only the decrease during recovery was significant (p = 0.002). Obese women with high anxiety displayed higher NUCB2/nesfatin-1 levels than those in the low anxiety group (TSST: +34 %, p = 0.008; control condition: +52 %, p = 0.013). Our data substantiate the involvement of NUCB2/nesfatin-1 in the modulation of stress and anxiety. It remains unclear whether the attenuated stress response in obese subjects is due to metabolic changes or mental comorbidity.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Adulto , Femenino , Humanos , Persona de Mediana Edad , Ansiedad/psicología , Nucleobindinas , Obesidad/psicología , Trastornos Psicofisiológicos , Calidad de Vida
12.
Neurobiol Stress ; 27: 100576, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37810429

RESUMEN

Background: Childhood maltreatment profoundly alters trajectories of brain development, promoting markedly increased long-term health risks and impaired intellectual development. However, the immediate impact of maltreatment on brain development in children and the extent to which altered global brain volume contributes to intellectual development in children with maltreatment experience is currently unknown. We here utilized MRI data obtained from children within 6 months after the exposure to maltreatment to assess the association of maltreatment severity with global brain volume changes. We further assessed the association between maltreatment severity and intellectual development and tested for the mediating effect of brain volume on this association. Method: We used structural MRI (3T) in a sample of 49 children aged 3-5 years with maltreatment exposure, i.e. emotional and physical abuse and/or neglect within 6 months, to characterize intracranial and tissue-specific volumes. Maltreatment severity was coded using the Maternal Interview for the Classification of Maltreatment. IQ was tested at study entry and after one year using the Snijders Oomen Nonverbal Test. Results: Higher maltreatment severity was significantly correlated with smaller intracranial volume (r = -.393, p = .008), which was mainly driven by lower total brain volume (r = -.393, p = .008), which in turn was primarily due to smaller gray matter volume (r = -.454, p = .002). Furthermore, smaller gray matter volume was associated with lower IQ at study entry (r = -.548, p < .001) and predicted IQ one year later (r = -.493, p = .004.). The observed associations were independent of potential confounding variables, including height, socioeconomic status, age and sex. Importance: We provide evidence that greater maltreatment severity in early childhood is related to smaller brain size at a very young age with significant consequences for intellectual ability, likely setting a path for far-reaching long-term disadvantages. Insights into the molecular and neural processes that underlie the impact of maltreatment on brain structure and function are urgently needed to derive mechanism-driven targets for early intervention.

13.
J Biol Chem ; 286(21): 19024-34, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21471225

RESUMEN

The type VII secretion system ESX-5 is a major pathway for export of PE and PPE proteins in pathogenic mycobacteria. These mycobacteria-specific protein families are characterized by conserved N-terminal domains of 100 and 180 amino acids, which contain the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) motifs after which they are named. Here we investigated secretion of the triacylglycerol lipase LipY, which in fast-growing mycobacteria contains a signal sequence, but in slow-growing species appears to have replaced the signal peptide with a PE or PPE domain. Selected LipY homologues were expressed in wild-type Mycobacterium marinum and its corresponding ESX-5 mutant, and localization of the proteins was investigated by immunoblotting and electron microscopy. Our study shows that Mycobacterium tuberculosis PE-LipY (LipY(tub)) and M. marinum PPE-LipY (LipY(mar)) are both secreted to the bacterial surface in an ESX-5-dependent fashion. After transport, the PE/PPE domains are removed by proteolytic cleavage. In contrast, Mycobacterium gilvum LipY, which has a signal sequence, is not transported to the cell surface. Furthermore, we show that LipY(tub) and LipY(mar) require their respective PE and PPE domains for ESX-5-dependent secretion. The role of the PE domain in ESX-5 secretion was confirmed in a whole cell lipase assay, in which wild-type bacteria expressing full-length LipY(tub), but not LipY(tub) lacking its PE domain, were shown to hydrolyze extracellular lipids. In conclusion, both PE and PPE domains contain a signal required for secretion of LipY by the ESX-5 system, and these domains are proteolytically removed upon translocation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Lipasa/metabolismo , Mycobacterium marinum/enzimología , Mycobacterium tuberculosis/enzimología , Señales de Clasificación de Proteína/fisiología , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Lipasa/genética , Estructura Terciaria de Proteína , Especificidad de la Especie
14.
PLoS Pathog ; 6(3): e1000794, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20221442

RESUMEN

The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, alpha-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Macrófagos/microbiología , Mycobacterium/metabolismo , Mycobacterium/ultraestructura , Cápsulas Bacterianas/ultraestructura , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Microscopía por Crioelectrón , Citocinas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Microscopía Inmunoelectrónica , Mycobacterium bovis/metabolismo , Mycobacterium bovis/ultraestructura , Mycobacterium marinum/metabolismo , Mycobacterium marinum/ultraestructura , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/ultraestructura , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/ultraestructura
15.
Microb Cell Fact ; 11: 85, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22709508

RESUMEN

BACKGROUND: The self-sufficient autotransporter (AT) pathway, ubiquitous in Gram-negative bacteria, combines a relatively simple protein secretion mechanism with a high transport capacity. ATs consist of a secreted passenger domain and a ß-domain that facilitates transfer of the passenger across the cell-envelope. They have a great potential for the extracellular expression of recombinant proteins but their exploitation has suffered from the limited structural knowledge of carrier ATs. Capitalizing on its crystal structure, we have engineered the Escherichia coli AT Hemoglobin protease (Hbp) into a platform for the secretion and surface display of heterologous proteins, using the Mycobacterium tuberculosis vaccine target ESAT6 as a model protein. RESULTS: Based on the Hbp crystal structure, five passenger side domains were selected and one by one replaced by ESAT6, whereas a ß-helical core structure (ß-stem) was left intact. The resulting Hbp-ESAT6 chimeras were efficiently and stably secreted into the culture medium of E. coli. On the other hand, Hbp-ESAT6 fusions containing a truncated ß-stem appeared unstable after translocation, demonstrating the importance of an intact ß-stem. By interrupting the cleavage site between passenger and ß-domain, Hbp-ESAT6 display variants were constructed that remain cell associated and facilitate efficient surface exposure of ESAT6 as judged by proteinase K accessibility and whole cell immuno-EM analysis. Upon replacement of the passenger side domain of an alternative AT, EspC, ESAT6 was also efficiently secreted, showing the approach is more generally applicable to ATs. Furthermore, Hbp-ESAT6 was efficiently displayed in an attenuated Salmonella typhimurium strain upon chromosomal integration of a single encoding gene copy, demonstrating the potential of the Hbp platform for live vaccine development. CONCLUSIONS: We developed the first structurally informed AT platform for efficient secretion and surface display of heterologous proteins. The platform has potential with regard to the development of recombinant live vaccines and may be useful for other biotechnological applications that require high-level secretion or display of recombinant proteins by bacteria.


Asunto(s)
Antígenos Bacterianos/metabolismo , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Antígenos Bacterianos/genética , Endopeptidasas/genética , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Mycobacterium tuberculosis/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmonella typhimurium/metabolismo
16.
EPMA J ; 13(3): 383-395, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36061827

RESUMEN

Depression and suicidal behavior are interrelated, stress-associated mental health conditions, each lacking biological verifiability. Concepts of predictive, preventive, and personalized medicine (3PM) are almost completely missing for both conditions but are of utmost importance. Prior research reported altered levels of the stress hormone cortisol in the scalp hair of depressed individuals, however, data on hair cortisol levels (HCL) for suicide completers (SC) are missing. Here, we aimed to identify differences in HCL between subject with depression (n = 20), SC (n = 45) and mentally stable control subjects (n = 12) to establish the usage of HCL as a new target for 3PM. HCL was measured in extracts of pulverized hair (1-cm and 3-cm hair segments) using ELISA. In 3-cm hair segments, an average increase in HCL for depressed patients (1.66 times higher; p = .011) and SC (5.46 times higher; p = 1.65 × 10-5) compared to that for controls was observed. Furthermore, the average HCL in SC was significantly increased compared to that in the depressed group (3.28 times higher; p = 1.4 × 10-5). A significant correlation between HCL in the 1-cm and the 3-cm hair segments, as well as a significant association between the severity of depressive symptoms and HCL (3-cm segment) was found. To conclude, findings of increased HCL in subjects with depression compared to that in controls were replicated and an additional increase in HCL was seen in SC in comparison to patients with depression. The usage of HCL for creating effective patient stratification and predictive approach followed by the targeted prevention and personalization of medical services needs to be validated in follow-up studies.

17.
Brain Sci ; 12(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36291248

RESUMEN

The attachment representation (AR) of individuals affects emotional and cognitive information processes and is considered an important modulating factor of neuroendocrine stress responses. The neuropeptide oxytocin is studied as one biomolecular component underpinning this modulation. A validated procedure used in attachment-related research is the Adult Attachment Projective Picture System (AAP). To date, only a limited number of studies investigated oxytocin and neuroendocrine reactivity in the context of an attachment-related stimulus similar to the APP. In this pilot study, N = 26 men of recent fatherhood were exposed to the AAP to classify AR and to investigate salivary changes in oxytocin, cortisol and dehydroepiandrosterone (DHEA) after AAP stimulation. We observed increased oxytocin levels in response to AAP exposure, and this increase was more pronounced in fathers with unresolved/disorganized AR. No significant changes in cortisol and DHEA concentrations were observed in response to AAP administration. Interestingly, differences in basal cortisol levels (before the AAP) also depended on AR classification. Here, the group of men with unresolved/disorganized AR showed higher levels of cortisol compared to fathers with organized AR. To conclude, the finding of increased salivary oxytocin levels in response to the AAP further indicates its validity as an instrument to stimulate the attachment system.

18.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920604

RESUMEN

Emerging data suggest that obesity is a major risk factor for the progression of major complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy in COVID-19. Understanding the mechanisms underlying the link between obesity and disease severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic interventions and preventive measures in this high-risk group. We propose that multiple features of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2 (ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine storm. Third, the negative consequences of obesity on blood coagulation can contribute to the progression of thrombus formation and hemorrhage. In this review we first summarize clinical findings on the relationship between obesity and COVID-19 disease severity and then further discuss potential mechanisms that could explain the risk for major complications in patients suffering from obesity.


Asunto(s)
COVID-19/complicaciones , Obesidad/complicaciones , Animales , COVID-19/inmunología , COVID-19/patología , Enfermedad Crónica , Humanos , Inmunidad , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Resistencia a la Insulina , Obesidad/inmunología , Obesidad/patología , Factores de Riesgo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Respuesta de Proteína Desplegada , Internalización del Virus
19.
Neurobiol Stress ; 15: 100336, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34095363

RESUMEN

Childhood maltreatment (CM) is an established major risk factor for a number of negative health outcomes later in life. While epigenetic mechanisms, such as DNA methylation (DNAm), have been proposed as a means of embedding this environmental risk factor, little is known about its timing and trajectory, especially in very young children. It is also not clear whether additional environmental adversities, often experienced by these children, converge on similar DNAm changes. Here, we calculated a cumulative adversity score, which additionally to CM includes socioeconomic status (SES), other life events, parental psychopathology and epigenetic biomarkers of prenatal smoking and alcohol consumption. We investigated the effects of CM alone as well as the adversity score on longitudinal DNAm trajectories in the Berlin Longitudinal Child Study. This is a cohort of 173 children aged 3-5 years at baseline of whom 86 were exposed to CM. These children were followed-up for 2 years with extensive psychometric and biological assessments as well as saliva collection at 5 time points providing genome-wide DNAm levels. Overall, only a few DNAm patterns were stable over this timeframe, but less than 10 DNAm regions showed significant changes. At baseline, neither CM nor the adversity score associated with DNAm changes. However, in 6 differentially methylated regions (DMRs), CM and the adversity score significantly moderated DNAm trajectories over time. A number of these DMRs have previously been associated with adverse prenatal exposures. In our study, children exposed to CM also presented with epigenetic signatures indicative of increased prenatal exposure to tobacco and alcohol, as compared to non-CM exposed children. These epigenetic signatures of prenatal exposure strongly correlate with DNAm regions associated with CM and the adversity score. Finally, weighted correlation network analysis revealed a module of CpGs exclusively associated with CM. While our study identifies DNAm loci specifically associated with CM, especially within long non-coding RNAs, the majority of associations were found with the adversity score with convergent association with indicators of adverse prenatal exposures. This study highlights the importance of mapping not only of the epigenome but also the exposome and extending the observational timeframe to well before birth.

20.
Neurobiol Stress ; 15: 100394, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34621920

RESUMEN

BACKGROUND: Studies reporting accelerated ageing in children with affective disorders or maltreatment exposure have relied on algorithms for estimating epigenetic age derived from adult samples. These algorithms have limited validity for epigenetic age estimation during early development. We here use a pediatric buccal epigenetic (PedBE) clock to predict DNA methylation-based ageing deviation in children with and without internalizing disorder and assess the moderating effect of maltreatment exposure. We further conduct a gene set enrichment analysis to assess the contribution of glucocorticoid signaling to PedBE clock-based results. METHOD: DNA was isolated from saliva of 158 children [73 girls, 85 boys; mean age (SD) = 4.25 (0.8) years] including children with internalizing disorder and maltreatment exposure. Epigenetic age was estimated based on DNA methylation across 94 CpGs of the PedBE clock. Residuals of epigenetic age regressed against chronological age were contrasted between children with and without internalizing disorder. Maltreatment was coded in 3 severity levels and entered in a moderation model. Genome-wide dexamethasone-responsive CpGs were derived from an independent sample and enrichment of these CpGs within the PedBE clock was identified. RESULTS: Children with internalizing disorder exhibited significant acceleration of epigenetic ageing as compared to children without internalizing disorder (F1,147 = 6.67, p = .011). This association was significantly moderated by maltreatment severity (b = 0.49, 95% CI [0.073, 0.909], t = 2.322, p = .022). Children with internalizing disorder who had experienced maltreatment exhibited ageing acceleration relative to children with no internalizing disorder (1-2 categories: b = 0.50, 95% CI [0.170, 0.821], t = 3.008, p = .003; 3 or more categories: b = 0.99, 95% CI [0.380, 1.593], t = 3.215, p = .002). Children with internalizing disorder who were not exposed to maltreatment did not show epigenetic ageing acceleration. There was significant enrichment of dexamethasone-responsive CpGs within the PedBE clock (OR = 4.36, p = 1.65*10-6). Among the 94 CpGs of the PedBE clock, 18 (19%) were responsive to dexamethasone. CONCLUSION: Using the novel PedBE clock, we show that internalizing disorder is associated with accelerated epigenetic ageing in early childhood. This association is moderated by maltreatment severity and may, in part, be driven by glucocorticoids. Identifying developmental drivers of accelerated epigenetic ageing after maltreatment will be critical to devise early targeted interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA