Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 602(3): 507-525, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38252405

RESUMEN

Evoking muscle responses by electrical vestibular stimulation (EVS) may help to understand the contribution of the vestibular system to postural control. Although paraspinal muscles play a role in postural stability, the vestibulo-muscular coupling of these muscles during walking has rarely been studied. This study aimed to investigate how vestibular signals affect paraspinal muscle activity at different vertebral levels during walking with preferred and narrow step width. Sixteen healthy participants were recruited. Participants walked on a treadmill for 8 min at 78 steps/min and 2.8 km/h, at two different step width, either with or without EVS. Bipolar electromyography was recorded bilaterally from the paraspinal muscles at eight vertebral levels from cervical to lumbar. Coherence, gain, and delay of EVS and EMG responses were determined. Significant EVS-EMG coupling (P < 0.01) was found at ipsilateral and/or contralateral heel strikes. This coupling was mirrored between left and right relative to the midline of the trunk and between the higher and lower vertebral levels, i.e. a peak occurred at ipsilateral heel strike at lower levels, whereas it occurred at contralateral heel strike at higher levels. EVS-EMG coupling only partially coincided with peak muscle activity. EVS-EMG coherence slightly, but not significantly, increased when walking with narrow steps. No significant differences were found in gain and phase between the vertebral levels or step width conditions. In summary, vertebral level specific modulation of paraspinal muscle activity based on vestibular signals might allow a fast, synchronized, and spatially co-ordinated response along the trunk during walking. KEY POINTS: Mediolateral stabilization of gait requires an estimate of the state of the body, which is affected by vestibular afference. During gait, the heavy trunk segment is controlled by phasic paraspinal muscle activity and in rodents the medial and lateral vestibulospinal tracts activate these muscles. To gain insight in vestibulospinal connections in humans and their role in gait, we recorded paraspinal surface EMG of cervical to lumbar paraspinal muscles, and characterized coherence, gain and delay between EMG and electrical vestibular stimulation, during slow walking. Vestibular stimulation caused phasic, vertebral level specific modulation of paraspinal muscle activity at delays of around 40 ms, which was mirrored between left, lower and right, upper vertebral levels. Our results indicate that vestibular afference causes fast, synchronized, and spatially co-ordinated responses of the paraspinal muscles along the trunk, that simultaneously contribute to stabilizing the centre of mass trajectory and to keeping the head upright.


Asunto(s)
Músculo Esquelético , Músculos Paraespinales , Humanos , Músculo Esquelético/fisiología , Caminata/fisiología , Electromiografía , Marcha/fisiología , Columna Vertebral/fisiología
2.
Eur Spine J ; 33(6): 2380-2394, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38483640

RESUMEN

PURPOSE: Sitting balance on an unstable surface requires coordinated out-of-phase lumbar spine and provides sufficient challenge to expose quality of spine control. We investigated whether the quality of spine coordination to maintain balance in acute low back pain (LBP) predicts recovery at 6 months. METHODS: Participants in an acute LBP episode (n = 94) underwent assessment of sitting balance on an unstable surface. Seat, hip and spine (lower lumbar, lumbar, upper lumbar, thoracic) angular motion and force plate data were recorded. Coordination between the seat and hip/spine segments to maintain balance was quantified in the frequency domain to evaluate coordination (coherence) and relative timing (phase angle: in-phase [segments move together]; out-of-phase [segments move opposite]). Center of pressure (CoP) and upper thorax motion assessed overall balance performance. Hip and spine coordination with the seat were compared between those who did not recover (increased/unchanged pain/disability), partially recovered (reduced pain/disability) or recovered (no pain and disability) at 6 months. RESULTS: In both planes, coherence between the seat and lower lumbar spine was lower (and in-phase-unhelpful for balance) at baseline in those who did not recover than those who recovered. Coherence between the seat and hip was higher in partially recovered in both planes, suggesting compensation by the hip. LBP groups had equal overall balance performance (CoP, upper thorax motion), but non-recovery groups used a less optimal strategy that might have consequences for long-term spine health. CONCLUSION: These longitudinal data revealed that individuals with compromised contribution of the lumbar spine to the balance during unstable sitting during acute LBP are less likely to recover.


Asunto(s)
Dolor de la Región Lumbar , Vértebras Lumbares , Equilibrio Postural , Humanos , Dolor de la Región Lumbar/fisiopatología , Masculino , Femenino , Vértebras Lumbares/fisiopatología , Adulto , Equilibrio Postural/fisiología , Persona de Mediana Edad , Evaluación de la Discapacidad , Dolor Agudo/fisiopatología
3.
Exp Brain Res ; 241(1): 49-58, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36346447

RESUMEN

Vestibular information modulates muscle activity during gait, presumably to contribute to stability. If this is the case, stronger effects of perturbing vestibular information on local dynamic stability of gait, a measure of the locomotor system's response to small, naturally occurring perturbations, can be expected for narrow-base walking (which needs more control) than for normal walking and smaller effects for wide-base walking (which needs less control). An important mechanism to stabilize gait is to coordinate foot placement to center of mass (CoM) state. Vestibular information most likely contributes to sensing this CoM state. We, therefore, expected that stochastic electrical vestibular stimulation (EVS) would decrease the correlation between foot placement and CoM state during the preceding swing phase. In 14 healthy participants, we measured the kinematics of the trunk (as a proxy of the CoM), and feet, while they walked on a treadmill in six conditions: control (usual step width), narrow-base, and wide-base, each with and without stochastic EVS (peak amplitude of 5 mA; RMS of ~ 1.2 mA; frequency band from 0 to 25 Hz). Stochastic EVS decreased local dynamic stability irrespective of step width. Foot placement correlated stronger with trunk motion during walking with EVS than without in the control condition. However, residual variance in foot placement was increased when walking with EVS, indicating less precise foot placement. Thus, a vestibular error signal leads to a decrease in gait stability and precision of foot placement, but these effects are not consistently modulated by step width.


Asunto(s)
Marcha , Caminata , Humanos , Marcha/fisiología , Caminata/fisiología , Pie/fisiología , Fenómenos Biomecánicos , Prueba de Esfuerzo , Equilibrio Postural/fisiología
4.
Arch Phys Med Rehabil ; 104(10): 1612-1619, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37172675

RESUMEN

OBJECTIVE: To provide reference values of cardiorespiratory fitness for individuals post-stroke in clinical rehabilitation and to gain insight in characteristics related to cardiorespiratory fitness post stroke. DESIGN: A retrospective cohort study. Reference equations of cardiopulmonary fitness corrected for age and sex for the fifth, 25th, 50th, 75th, and 95th percentile were constructed with quantile regression analysis. The relation between patient characteristics and cardiorespiratory fitness was determined by linear regression analyses adjusted for sex and age. Multivariate regression models of cardiorespiratory fitness were constructed. SETTING: Clinical rehabilitation center. PARTICIPANTS: Individuals post-stroke who performed a cardiopulmonary exercise test as part of clinical rehabilitation between July 2015 and May 2021 (N=405). MAIN OUTCOME MEASURES: Cardiorespiratory fitness in terms of peak oxygen uptake (V˙O2peak) and oxygen uptake at ventilatory threshold (V˙O2-VT). RESULTS: References equations for cardiorespiratory fitness stratified by sex and age were provided based on 405 individuals post-stroke. Median V˙O2peak was 17.8[range 8.4-39.6] mL/kg/min and median V˙O2-VT was 9.7[range 5.9-26.6] mL/kg/min. Cardiorespiratory fitness was lower in individuals who were older, women, using beta-blocker medication, and in individuals with a higher body mass index and lower motor ability. CONCLUSIONS: Population specific reference values of cardiorespiratory fitness for individuals post-stroke corrected for age and sex were presented. These can give individuals post-stroke and health care providers insight in their cardiorespiratory fitness compared with their peers. Furthermore, they can be used to determine the potential necessity for cardiorespiratory fitness training as part of the rehabilitation program for an individual post-stroke to enhance their fitness, functioning and health. Especially, individuals post-stroke with more mobility limitations and beta-blocker use are at a higher risk of low cardiorespiratory fitness.


Asunto(s)
Capacidad Cardiovascular , Accidente Cerebrovascular , Humanos , Femenino , Estudios Retrospectivos , Valores de Referencia , Consumo de Oxígeno , Accidente Cerebrovascular/complicaciones , Prueba de Esfuerzo , Oxígeno
5.
Scand J Med Sci Sports ; 33(6): 954-965, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36752650

RESUMEN

PURPOSE: This study assessed activity distribution among the hamstring muscles during high-speed running. The objective was to compare within and between muscle activity, relative contribution and hip and knee joint angles at peak muscle activity during high-speed running. METHODS: Through multichannel electromyography, we measured muscle activity in male basketball players during high-speed running on a treadmill at 15 locations: five for biceps femoris long head, four for semitendinosus, and six for semimembranosus. Muscle activity was calculated for each location within each hamstring muscle individually for each percent of a stride cycle. RESULTS: Twenty-nine non-injured basketball players were included (mean age: 17 ± 1 years; mass, 85 ± 9 kg; height, 193 ± 9 cm). Heterogeneous activity was found for all individual hamstring muscles across multiple events of the stride cycle. In the late-swing phase, muscle activity and relative contribution of the semimembranosus was significantly higher than of the semitendinosus. There was no significant difference in hip and knee joint angles at instant of peak muscle activity, assessed locally within individual hamstring muscles, as well as in general over the whole hamstring muscle. CONCLUSION: Hamstring muscles were most active in the late-swing phase during high-speed running. In this phase, the semimembranosus was most active and the semitendinosus was least active. Within the biceps femoris long head, the most proximal region was significantly more active in the late-swing phase, compared to other muscle regions. For each muscle and location, peak muscle activity occurred at similar hip and knee joint angles.


Asunto(s)
Músculos Isquiosurales , Carrera , Humanos , Masculino , Adolescente , Músculos Isquiosurales/fisiología , Electromiografía , Articulación de la Rodilla/fisiología , Carrera/fisiología , Prueba de Esfuerzo , Músculo Esquelético/fisiología
6.
J Appl Biomech ; 39(6): 377-387, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567580

RESUMEN

The aim of this study was to evaluate the effect of a Nordic hamstring exercise intervention on biceps femoris long head, semitendinosus, and semimembranosus muscle's activity and relative contributions through multichannel electromyography. Twenty-four injury-free male basketball players (mean age 20 [3] y) were randomly assigned to a 12-week intervention (n = 13) or control group (n = 11). The primary outcome measures were normalized muscle activity (percentage of maximal voluntary isometric contraction, %MVIC) and relative contribution of hamstring muscles over 12 weeks. No effects were found on any of the primary outcome measures. Between-group differences over 12 weeks were 2.7%MVIC (95% confidence interval 95% CI, -0.7 to 6.1) for the biceps femoris long head, 3.4%MVIC (95% CI, -1.4 to 8.2) for the semitendinosus, and 0.8%MVIC (95% CI, -3.0 to 4.6) for the semimembranosus, P = .366. Between-group differences over 12 weeks were 1.0% relative contribution (%con; 95% CI, -3.0 to 5.1) for the biceps femoris long head, 2.2% relative contribution (95% CI, -2.8 to 7.2) for the semitendinosus, and -3.3% relative contribution (95% CI, -6.4 to -0.1) for the semimembranosus P = .258. A positive value implies a higher value for the Nordic group. A Nordic hamstring exercise intervention did not affect the level of muscle activity and relative contribution of hamstring muscles in performance of the Nordic hamstring exercise.


Asunto(s)
Músculos Isquiosurales , Humanos , Masculino , Adulto Joven , Adulto , Músculos Isquiosurales/fisiología , Electromiografía , Contracción Isométrica , Ejercicio Físico/fisiología
7.
J Appl Biomech ; 39(2): 69-79, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791725

RESUMEN

This study assessed activity distribution among the hamstring muscles during the Nordic hamstring exercise (NHE). The objective was to compare muscle activity between and within muscles during the NHE to add insights in its underlying protective mechanism. Through multichannel electromyography, we measured muscle activity in male basketball players during the NHE. Electromyography was assessed at 15 locations: 5 for biceps femoris long head, 4 for semitendinosus, and 6 for semimembranosus. For each percent of the eccentric phase of the NHE, muscle activity was calculated for each electrode location within each hamstring muscle individually. To quantify whole muscle head activity, means and variances across electrodes within each muscle were calculated. Thirty-five noninjured participants were included (mean age, 18 [2] y; mass, 87 [12] kg; height, 192 [9] cm). Heterogeneous muscle activity was found between 38% and 62% and over the whole eccentric contraction phase within the semitendinosus and the semimembranosus, respectively. Muscle activity of the semitendinosus was significantly higher than that of the biceps femoris long head. During the NHE, the relative contribution of the semitendinosus is the highest among hamstring muscles. Its strong contribution may compensate for the biceps femoris long head, the most commonly injured hamstring muscle head.


Asunto(s)
Músculos Isquiosurales , Humanos , Masculino , Adolescente , Músculos Isquiosurales/fisiología , Electromiografía , Ejercicio Físico/fisiología , Fuerza Muscular
8.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35009915

RESUMEN

Inertial measurement units (IMUs) fixed to the lower limbs have been reported to provide accurate estimates of stride lengths (SLs) during walking. Due to technical challenges, validation of such estimates in running is generally limited to speeds (well) below 5 m·s-1. However, athletes sprinting at (sub)maximal effort already surpass 5 m·s-1 after a few strides. The present study aimed to develop and validate IMU-derived SLs during maximal linear overground sprints. Recreational athletes (n = 21) completed two sets of three 35 m sprints executed at 60, 80, and 100% of subjective effort, with an IMU on the instep of each shoe. Reference SLs from start to ~30 m were obtained with a series of video cameras. SLs from IMUs were obtained by double integration of horizontal acceleration with a zero-velocity update, corrected for acceleration artefacts at touch-down of the feet. Peak sprint speeds (mean ± SD) reached at the three levels of effort were 7.02 ± 0.80, 7.65 ± 0.77, and 8.42 ± 0.85 m·s-1, respectively. Biases (±Limits of Agreement) of SLs obtained from all participants during sprints at 60, 80, and 100% effort were 0.01% (±6.33%), -0.75% (±6.39%), and -2.51% (±8.54%), respectively. In conclusion, in recreational athletes wearing IMUs tightly fixed to their shoes, stride length can be estimated with reasonable accuracy during maximal linear sprint acceleration.


Asunto(s)
Pie , Carrera , Aceleración , Atletas , Fenómenos Biomecánicos , Humanos , Zapatos
9.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35161654

RESUMEN

BACKGROUND: Gait is often impaired in people after stroke, restricting personal independence and affecting quality of life. During stroke rehabilitation, walking capacity is conventionally assessed by measuring walking distance and speed. Gait features, such as asymmetry and variability, are not routinely determined, but may provide more specific insights into the patient's walking capacity. Inertial measurement units offer a feasible and promising tool to determine these gait features. OBJECTIVE: We examined the test-retest reliability of inertial measurement units-based gait features measured in a two-minute walking assessment in people after stroke and while in clinical rehabilitation. METHOD: Thirty-one people after stroke performed two assessments with a test-retest interval of 24 h. Each assessment consisted of a two-minute walking test on a 14-m walking path. Participants were equipped with three inertial measurement units, placed at both feet and at the low back. In total, 166 gait features were calculated for each assessment, consisting of spatio-temporal (56), frequency (26), complexity (63), and asymmetry (14) features. The reliability was determined using the intraclass correlation coefficient. Additionally, the minimal detectable change and the relative minimal detectable change were computed. RESULTS: Overall, 107 gait features had good-excellent reliability, consisting of 50 spatio-temporal, 8 frequency, 36 complexity, and 13 symmetry features. The relative minimal detectable change of these features ranged between 0.5 and 1.5 standard deviations. CONCLUSION: Gait can reliably be assessed in people after stroke in clinical stroke rehabilitation using three inertial measurement units.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Marcha , Humanos , Calidad de Vida , Reproducibilidad de los Resultados , Accidente Cerebrovascular/diagnóstico , Caminata
10.
Int J Sports Med ; 42(12): 1098-1104, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33862639

RESUMEN

Assessment of metabolic energy expenditure from indirect calorimetry is currently limited to sustained (>4 min) cyclic activities, because of steady-state requirements. This is problematic for patient populations who are unable to perform such sustained activities. Therefore, this study explores validity and reliability of a method estimating metabolic energy expenditure based on oxygen consumption (V̇O2) during short walking bouts. Twelve able-bodied adults twice performed six treadmill walking trials (1, 2 and 6 min at 4 and 5 km/h), while V̇O2 was measured. Total V̇O2 was calculated by integrating net V̇O2 over walking and recovery. Concurrent validity with steady-state V̇O2 was assessed with Pearson's correlations. Test-retest reliability was assessed using intra-class correlation coefficients (ICC) and Bland-Altman analyses. Total V̇O2 was strongly correlated with steady-state V̇O2 (r=0.91-0.99), but consistently higher. Test-retest reliability of total V̇O2 (ICC=0.65-0.92) was lower than or comparable to steady-state V̇O2 (ICC=0.83-0.92), with lower reliability for shorter trials. Total V̇O2 discriminated between gait speeds. Total oxygen uptake provides a useful measure to estimate metabolic load of short activities from oxygen consumption. Although estimates are less reliable than steady-state measurements, they can provide insight in the yet unknown metabolic demands of daily activities for patient populations unable to perform sustained activities.


Asunto(s)
Calorimetría Indirecta/métodos , Calorimetría Indirecta/normas , Metabolismo Energético/fisiología , Consumo de Oxígeno/fisiología , Caminata/fisiología , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Reproducibilidad de los Resultados , Prueba de Paso , Adulto Joven
11.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009627

RESUMEN

The risk of low-back pain in manual material handling could potentially be reduced by back-support exoskeletons. Preferably, the level of exoskeleton support relates to the required muscular effort, and therefore should be proportional to the moment generated by trunk muscle activities. To this end, a regression-based prediction model of this moment could be implemented in exoskeleton control. Such a model must be calibrated to each user according to subject-specific musculoskeletal properties and lifting technique variability through several calibration tasks. Given that an extensive calibration limits the practical feasibility of implementing this approach in the workspace, we aimed to optimize the calibration for obtaining appropriate predictive accuracy during work-related tasks, i.e., symmetric lifting from the ground, box stacking, lifting from a shelf, and pulling/pushing. The root-mean-square error (RMSE) of prediction for the extensive calibration was 21.9 nm (9% of peak moment) and increased up to 35.0 nm for limited calibrations. The results suggest that a set of three optimally selected calibration trials suffice to approach the extensive calibration accuracy. An optimal calibration set should cover each extreme of the relevant lifting characteristics, i.e., mass lifted, lifting technique, and lifting velocity. The RMSEs for the optimal calibration sets were below 24.8 nm (10% of peak moment), and not substantially different than that of the extensive calibration.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Calibración , Electromiografía , Elevación , Región Lumbosacra , Músculo Esquelético
12.
Exp Brain Res ; 238(6): 1371-1383, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32266445

RESUMEN

This study aimed to assess modulation of lower leg muscle reflex excitability and co-contraction during unipedal balancing on compliant surfaces in young and older adults. Twenty healthy adults (ten aged 18-30 years and ten aged 65-80 years) were recruited. Soleus muscle H-reflexes were elicited by electrical stimulation of the tibial nerve, while participants stood unipedally on a robot-controlled balance platform, simulating different levels of surface compliance. In addition, electromyographic data (EMG) of soleus (SOL), tibialis anterior (TA), and peroneus longus (PL) and full-body 3D kinematic data were collected. The mean absolute center of mass velocity was determined as a measure of balance performance. Soleus H-reflex data were analyzed in terms of the amplitude related to the M wave and the background EMG activity 100 ms prior to the stimulation. The relative duration of co-contraction was calculated for soleus and tibialis anterior, as well as for peroneus longus and tibialis anterior. Center of mass velocity was significantly higher in older adults compared to young adults ([Formula: see text] and increased with increasing surface compliance in both groups ([Formula: see text]. The soleus H-reflex gain decreased with surface compliance in young adults [Formula: see text], while co-contraction increased [Formula: see text]. Older adults did not show such modulations, but showed overall lower H-reflex gains [Formula: see text] and higher co-contraction than young adults [Formula: see text]. These results suggest an overall shift in balance control from the spinal level to supraspinal levels in older adults, which also occurred in young adults when balancing at more compliant surfaces.


Asunto(s)
Envejecimiento/fisiología , Tobillo/fisiología , Reflejo H/fisiología , Pierna/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estimulación Eléctrica , Electromiografía , Femenino , Humanos , Masculino , Nervio Tibial/fisiología , Adulto Joven
13.
BMC Geriatr ; 20(1): 167, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380950

RESUMEN

BACKGROUND: The European population is rapidly ageing. There is an urgent need for innovative solutions to reduce fall risk in older adults. Perturbation-based gait training is a promising new method to improve reactive balance responses. Whereas positive effects on task-specific dynamic balance recovery during gait have been shown in clinical or laboratory settings, translation of these effects to daily life gait function and fall risk is limited. We aim to evaluate the effect of a 4-week perturbation-based treadmill training on daily-life dynamic gait stability, assessed with inertial sensor data. Secondary outcomes are balance recovery performance, clinical balance and gait assessment scores, the amount of physical activity in daily life and falls incidence during 6 months follow-up. METHODS: The study is a monocenter assessor-blinded randomized controlled trial. The target study sample consists of 70 older adults of 65 years and older, living in the community and with an elevated risk of falling. A block-randomization to avoid seasonal effects will be used to allocate the participants into two groups. The experimental group receives a 4-week, two times per week perturbation-based gait training programme on a treadmill, with simulated slips and trips, in combination with cognitive dual tasks. The control group receives a 4-week, two times per week treadmill training programme under cognitive dual-task conditions without perturbations. Participants will be assessed at baseline and after the 4-weeks intervention period on their daily-life gait stability by wearing an inertial sensor on the lower back for seven consecutive days. In addition, clinical balance and gait assessments as well as questionnaires on falls- and gait-efficacy will be taken. Daily life falls will be followed up over 6 months by a fall calendar. DISCUSSION: Whereas perturbation-based training has shown positive effects in improving balance recovery strategies and in reducing laboratory falls, this study will contribute to investigate the translation of perturbation-based treadmill training effects in a clinical setting towards improving daily life gait stability and reducing fall risk and falls. TRIAL REGISTRATION: NTR7703 / NL66322.028.18, Registered: January 8, 2019; Enrolment of the first participant April 8, 2019.


Asunto(s)
Accidentes por Caídas , Equilibrio Postural , Accidentes por Caídas/prevención & control , Anciano , Ejercicio Físico , Terapia por Ejercicio , Marcha , Humanos
14.
J Neuroeng Rehabil ; 17(1): 6, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941518

RESUMEN

BACKGROUND: Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these novel exergames as training tool for elderly and, more specifically whether these games can elicit more challenging weight shifts and higher levels of muscle activity compared to existing off-the-shelf exergames. Furthermore, the motivational pull in these new games was studied. METHODS: Sixteen healthy older adults were recruited to play the novel games and two reference games that were found to be the most challenging ones in terms of weight shifts or muscle activity in previous studies. Weight shifts were expressed relative to participants' Functional Limits of Stability (FLOS). Muscular challenge of the games was quantified by dividing the signal into 200 ms blocks and determining the average muscle activity within these blocks. The muscle activity was normalized to maximal voluntary contractions (MVC) to categorize the blocks in zones of < 40, 40-60, 60-80 and > 80% MVC. Subsequently, the number of blocks per intensity level and the number of consecutive blocks above 40% were determined. Motivation to play the games was assessed using the Intrinsic Motivation Inventory (IMI) and scores between the games were analyzed using Generalized Estimated Equations (GEE). RESULTS: The novel exergames successfully elicited center of mass (COM) displacements with medians of around 80% of FLOS or higher for all directions. Furthermore, the COM displacements in the novel games were larger for each direction than in the reference games, although for one game the sideward left direction reached significance only at the third trial. Compared to the existing games, longer blocks of muscle activation above 40% MVC were found, but overall intensity remained low. IMI scores were high on all subscales, indicating that older adults experienced the games as motivating. CONCLUSION: We conclude that affordable hardware can be used to create challenging and enjoyable balance training programs using exergames. The exergames that were successful in eliciting challenging weight shifts and muscle activity should now be further studied in longitudinal randomized controlled interventions, to assess effects on balance, muscle strength and eventually fall risk in healthy older adults.


Asunto(s)
Terapia por Ejercicio/métodos , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Juegos de Video , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino
15.
Hum Factors ; 62(3): 365-376, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31914327

RESUMEN

OBJECTIVE: The objective of this study was to identify criteria to be considered when developing an exoskeleton for low-back pain patients by exploring the perceptions and expectations of potential end users. BACKGROUND: Psychosocial, psychological, physical load, and personality influence incidence of low-back pain. Body-worn assistive devices that passively support the user's trunk, that is exoskeletons, can decrease mechanical loading and potentially reduce low-back pain. A user-centered approach improves patient safety and health outcomes, increases user satisfaction, and ensures usability. Still, previous studies have not taken psychological factors and the early involvement of end users into account. METHOD: We conducted focus group studies with low-back pain patients (n = 4) and health care professionals (n = 8). Focus group sessions were audio-recorded, transcribed, and analyzed, using the general inductive approach. The focus group discussions included trying out an available exoskeleton. Questions were designed to elicit opinions about exoskeletons, desired design specifications, and usability. RESULTS: Important design characteristics were comfort, individual adjustability, independency in taking it on and off, and gradual adjustment of support. Patients raised concerns over loss of muscle strength. Health care professionals mentioned the risk of confirming disability of the user and increasing guarded movement in patients. CONCLUSION: The focus groups showed that implementation of a trunk exoskeleton to reduce low-back pain requires an adequate implementation strategy, including supervision and behavioral coaching. APPLICATION: For health care professionals, the optimal field of application, prevention or rehabilitation, is still under debate. Patients see potential in an exoskeleton to overcome their limitations and expect it to improve their quality of life.


Asunto(s)
Dolor Crónico/prevención & control , Dolor Crónico/psicología , Dispositivo Exoesqueleto , Grupos Focales , Dolor de la Región Lumbar/prevención & control , Dolor de la Región Lumbar/psicología , Torso/fisiología , Diseño Centrado en el Usuario , Adulto , Miedo , Femenino , Personal de Salud , Encuestas Epidemiológicas , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Dispositivos Electrónicos Vestibles , Soporte de Peso
16.
J Strength Cond Res ; 34(2): 495-505, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30052604

RESUMEN

Huurnink, A, Fransz, DP, de Boode, VA, Kingma, I, and van Dieën, JH. Age-matched z-scores for longitudinal monitoring of center of pressure speed in single-leg stance performance in elite male youth soccer players. J Strength Cond Res 34(2): 495-505, 2020-Coordination of corrective motor actions is considered important for soccer performance and injury prevention. A single-leg stance (SLS) test assesses the integrity and proficiency of the sensorimotor control system, quantified by center of pressure averaged speed (COPspeed). We aimed to provide age-matched z-scores for COPspeed in elite male youth soccer players. Second, we assessed a threshold for abnormal long-term change in performance, i.e., critical difference (CD). In a youth academy program, 133 soccer players of 9-18 years were tested twice for both legs (2 repetitions), and one repetition follow-up was conducted at 5.8 months (SD 2.7). Linear regression between age and COPspeed was performed to provide age-matched z-scores. Variance of differences in z-scores at baseline and between sessions was used to estimate the CD up to 5 repetitions. Intraclass correlation coefficients (ICCs) were assessed within and between sessions. The age significantly affected COPspeed (p < 0.0001), with lower values in older players (95% confidence interval; 3.45-9.17 to 2.88-5.13 cm·s, for 9 and 18 years, respectively). The z-score CD ranged from 1.72 (one repetition) to 1.34 (5 repetitions). The ICC of z-scores was 0.88 within session and 0.81 between sessions. In conclusion, the SLS performance in elite male youth soccer players improves with age. We determined age-matched z-scores of COPspeed, which reliably determined performance according to age. The CD allows for detection of abnormal variations in COPspeed to identify players with a (temporary) deterioration of sensorimotor function. This could be applied to concussion management, or to detect underlying physical impairments.


Asunto(s)
Rendimiento Atlético/fisiología , Fútbol/fisiología , Adolescente , Factores de Edad , Niño , Prueba de Esfuerzo , Humanos , Masculino
17.
Neuroimage ; 199: 30-37, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31121297

RESUMEN

In neuromotor control, the dimensionality of complex muscular activation patterns is effectively reduced through the emergence of muscle synergies. Muscle synergies are tailored to task-specific biomechanical needs. Traditionally, they are considered as low-dimensional neural output of the spinal cord and as such their coherent cortico-muscular pathways have remained underexplored in humans. We investigated whether muscle synergies have a higher-order origin, especially, whether they are manifest in the cortical motor network. We focused on cortical muscle synergy representations involved in balance control and examined changes in cortico-synergy coherence accompanying short-term balance training. We acquired electromyography and electro-encephalography and reconstructed cortical source activity using adaptive spatial filters. The latter were based on three muscle synergies decomposed from the activity of nine unilateral leg muscles using non-negative matrix factorization. The corresponding cortico-synergy coherence displayed phase-locked activity at the Piper rhythm, i.e., cortico-spinal synchronization around 40 Hz. Our study revealed the presence of muscle synergies in the motor cortex, in particular, in the paracentral lobule, known for the representation of lower extremities. We conclude that neural oscillations synchronize between the motor cortex and spinal motor neuron pools signifying muscle synergies. The corresponding cortico-synergy coherence around the Piper rhythm decreases with training-induced balance improvement.


Asunto(s)
Ondas Encefálicas/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Médula Espinal/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Femenino , Humanos , Estudios Longitudinales , Masculino , Adulto Joven
18.
J Sports Sci ; 37(3): 313-321, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30036138

RESUMEN

Kinetics and full body kinematics were measured in ten elite goalkeepers diving to save high and low balls at both sides of the goal, aiming to investigate their starting position, linear and angular momentum, and legs' contribution to end-performance. Our results showed that goalkeepers adopted a starting position with a stance width of 33 ± 1% of leg length, knee flexion angle of 62 ± 18° and hip flexion angle of 63 ± 18°. The contralateral leg contributed more than the ipsilateral leg to COM velocity (p < 0.01), both for the horizontal (2.7 ± 0.1 m·s-1 versus 1.2 ± 0.1 m·s-1) and for the vertical component (3.1 ± 0.3 m·s-1 versus 0.4 ± 0.2 m·s-1). Peak horizontal and peak angular momenta were significantly larger (p < 0.01) for low dives than for high dives with a mean difference of 55 kg·m·s-1 and 9 kg·m2·s-1, respectively. In addition, peak vertical momentum was significantly larger (p < 0.01) for high dives with a mean difference between dive heights of 113 kg·m·s-1. Coaches need to highlight horizontal lateral skills and exercises (e.g. sideward push-off, sideward jumps), with emphasis on pushing-off with the contralateral leg, when training and assessing goalkeeper's physical performance.


Asunto(s)
Fenómenos Biomecánicos , Movimiento , Fútbol , Adolescente , Articulación de la Cadera , Humanos , Cinética , Articulación de la Rodilla , Rango del Movimiento Articular , Adulto Joven
20.
Sensors (Basel) ; 19(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614440

RESUMEN

Technological advances in inertial sensors allow for monitoring of daily-life gait characteristics as a proxy for fall risk. The quality of daily-life gait could serve as a valuable outcome for intervention trials, but the uptake of these measures relies on their power to detect relevant changes in fall risk. We collected daily-life gait characteristics in 163 older people (aged 77.5 ± 7.5, 107♀) over two measurement weeks that were two weeks apart. We present variance estimates of daily-life gait characteristics that are sensitive to fall risk and estimate the number of participants required to obtain sufficient statistical power for repeated comparisons. The provided data allows for power analyses for studies using daily-life gait quality as outcome. Our results show that the number of participants required (i.e., 8 to 343 depending on the anticipated effect size and between-measurements correlation) is similar to that generally used in fall prevention trials. We propose that the quality of daily-life gait is a promising outcome for intervention studies that focus on improving balance and mobility and reducing falls.


Asunto(s)
Accidentes por Caídas , Marcha/fisiología , Movimiento , Equilibrio Postural/fisiología , Calidad de Vida , Anciano , Anciano de 80 o más Años , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA