Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gastric Cancer ; 26(2): 264-274, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36264524

RESUMEN

BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS: On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS: Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Estudios Retrospectivos , Neoplasias Gástricas/patología , Inestabilidad de Microsatélites , Biomarcadores de Tumor/genética
2.
Nat Commun ; 15(1): 1253, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341402

RESUMEN

Deep Learning (DL) can predict biomarkers from cancer histopathology. Several clinically approved applications use this technology. Most approaches, however, predict categorical labels, whereas biomarkers are often continuous measurements. We hypothesize that regression-based DL outperforms classification-based DL. Therefore, we develop and evaluate a self-supervised attention-based weakly supervised regression method that predicts continuous biomarkers directly from 11,671 images of patients across nine cancer types. We test our method for multiple clinically and biologically relevant biomarkers: homologous recombination deficiency score, a clinically used pan-cancer biomarker, as well as markers of key biological processes in the tumor microenvironment. Using regression significantly enhances the accuracy of biomarker prediction, while also improving the predictions' correspondence to regions of known clinical relevance over classification. In a large cohort of colorectal cancer patients, regression-based prediction scores provide a higher prognostic value than classification-based scores. Our open-source regression approach offers a promising alternative for continuous biomarker analysis in computational pathology.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Biomarcadores de Tumor/genética , Tecnología , Microambiente Tumoral
3.
NPJ Precis Oncol ; 8(1): 115, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783059

RESUMEN

In the spectrum of colorectal tumors, microsatellite-stable (MSS) tumors with DNA polymerase ε (POLE) mutations exhibit a hypermutated profile, holding the potential to respond to immunotherapy similarly to their microsatellite-instable (MSI) counterparts. Yet, due to their rarity and the associated testing costs, systematic screening for these mutations is not commonly pursued. Notably, the histopathological phenotype resulting from POLE mutations is theorized to resemble that of MSI. This resemblance not only could facilitate their detection by a transformer-based Deep Learning (DL) system trained on MSI pathology slides, but also indicates the possibility for MSS patients with POLE mutations to access enhanced treatment options, which might otherwise be overlooked. To harness this potential, we trained a Deep Learning classifier on a large dataset with the ground truth for microsatellite status and subsequently validated its capabilities for MSI and POLE detection across three external cohorts. Our model accurately identified MSI status in both the internal and external resection cohorts using pathology images alone. Notably, with a classification threshold of 0.5, over 75% of POLE driver mutant patients in the external resection cohorts were flagged as "positive" by a DL system trained on MSI status. In a clinical setting, deploying this DL model as a preliminary screening tool could facilitate the efficient identification of clinically relevant MSI and POLE mutations in colorectal tumors, in one go.

4.
NPJ Breast Cancer ; 9(1): 91, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940649

RESUMEN

Breast cancer prognosis and management for both men and women are reliant upon estrogen receptor alpha (ERα) and progesterone receptor (PR) expression to inform therapy. Previous studies have shown that there are sex-specific binding characteristics of ERα and PR in breast cancer and, counterintuitively, ERα expression is more common in male than female breast cancer. We hypothesized that these differences could have morphological manifestations that are undetectable to human observers but could be elucidated computationally. To investigate this, we trained attention-based multiple instance learning prediction models for ERα and PR using H&E-stained images of female breast cancer from the Cancer Genome Atlas (TCGA) (n = 1085) and deployed them on external female (n = 192) and male breast cancer images (n = 245). Both targets were predicted in the internal (AUROC for ERα prediction: 0.86 ± 0.02, p < 0.001; AUROC for PR prediction = 0.76 ± 0.03, p < 0.001) and external female cohorts (AUROC for ERα prediction: 0.78 ± 0.03, p < 0.001; AUROC for PR prediction = 0.80 ± 0.04, p < 0.001) but not the male cohort (AUROC for ERα prediction: 0.66 ± 0.14, p = 0.43; AUROC for PR prediction = 0.63 ± 0.04, p = 0.05). This suggests that subtle morphological differences invisible upon visual inspection may exist between the sexes, supporting previous immunohistochemical, genomic, and transcriptomic analyses.

5.
NPJ Precis Oncol ; 7(1): 35, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977919

RESUMEN

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.

6.
Eur Heart J Digit Health ; 4(3): 265-274, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37265858

RESUMEN

Aims: One of the most important complications of heart transplantation is organ rejection, which is diagnosed on endomyocardial biopsies by pathologists. Computer-based systems could assist in the diagnostic process and potentially improve reproducibility. Here, we evaluated the feasibility of using deep learning in predicting the degree of cellular rejection from pathology slides as defined by the International Society for Heart and Lung Transplantation (ISHLT) grading system. Methods and results: We collected 1079 histopathology slides from 325 patients from three transplant centres in Germany. We trained an attention-based deep neural network to predict rejection in the primary cohort and evaluated its performance using cross-validation and by deploying it to three cohorts. For binary prediction (rejection yes/no), the mean area under the receiver operating curve (AUROC) was 0.849 in the cross-validated experiment and 0.734, 0.729, and 0.716 in external validation cohorts. For a prediction of the ISHLT grade (0R, 1R, 2/3R), AUROCs were 0.835, 0.633, and 0.905 in the cross-validated experiment and 0.764, 0.597, and 0.913; 0.631, 0.633, and 0.682; and 0.722, 0.601, and 0.805 in the validation cohorts, respectively. The predictions of the artificial intelligence model were interpretable by human experts and highlighted plausible morphological patterns. Conclusion: We conclude that artificial intelligence can detect patterns of cellular transplant rejection in routine pathology, even when trained on small cohorts.

7.
medRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945540

RESUMEN

Background: Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on routine Hematoxylin & Eosin (H&E) histology images in ten cancer types. Methods: We developed a fully automated deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. A combined genomic scar HRD score, which integrated loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) was calculated from whole genome sequencing data for n=4,565 patients from two independent cohorts. The primary statistical endpoint was the Area Under the Receiver Operating Characteristic curve (AUROC) for the prediction of genomic scar HRD with a clinically used cutoff value. Results: We found that HRD status is predictable in tumors of the endometrium, pancreas and lung, reaching cross-validated AUROCs of 0.79, 0.58 and 0.66. Predictions generalized well to an external cohort with AUROCs of 0.93, 0.81 and 0.73 respectively. Additionally, an HRD classifier trained on breast cancer yielded an AUROC of 0.78 in internal validation and was able to predict HRD in endometrial, prostate and pancreatic cancer with AUROCs of 0.87, 0.84 and 0.67 indicating a shared HRD-like phenotype is across tumor entities. Conclusion: In this study, we show that HRD is directly predictable from H&E slides using attMIL within and across ten different tumor types.

8.
Cell Rep Med ; 4(4): 100980, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36958327

RESUMEN

Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.


Asunto(s)
Neoplasias Colorrectales , Aprendizaje Profundo , Humanos , Estudios Retrospectivos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biomarcadores , Inestabilidad de Microsatélites , Fosfatidilinositol 3-Quinasa Clase I/genética
9.
Neurooncol Adv ; 5(1): vdad139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106649

RESUMEN

Background: Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. Methods: We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N = 2845 patients. Results: We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q codeletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90, and 0.80 in the training cohort, respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79, and 0.87 for prediction of IDH, ATRX, and 1p19q codeletion, respectively. Conclusions: In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available.

10.
Sci Rep ; 12(1): 4829, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318364

RESUMEN

Artificial intelligence (AI) is widely used to analyze gastrointestinal (GI) endoscopy image data. AI has led to several clinically approved algorithms for polyp detection, but application of AI beyond this specific task is limited by the high cost of manual annotations. Here, we show that a weakly supervised AI can be trained on data from a clinical routine database to learn visual patterns of GI diseases without any manual labeling or annotation. We trained a deep neural network on a dataset of N = 29,506 gastroscopy and N = 18,942 colonoscopy examinations from a large endoscopy unit serving patients in Germany, the Netherlands and Belgium, using only routine diagnosis data for the 42 most common diseases. Despite a high data heterogeneity, the AI system reached a high performance for diagnosis of multiple diseases, including inflammatory, degenerative, infectious and neoplastic diseases. Specifically, a cross-validated area under the receiver operating curve (AUROC) of above 0.70 was reached for 13 diseases, and an AUROC of above 0.80 was reached for two diseases in the primary data set. In an external validation set including six disease categories, the AI system was able to significantly predict the presence of diverticulosis, candidiasis, colon and rectal cancer with AUROCs above 0.76. Reverse engineering the predictions demonstrated that plausible patterns were learned on the level of images and within images and potential confounders were identified. In summary, our study demonstrates the potential of weakly supervised AI to generate high-performing classifiers and identify clinically relevant visual patterns based on non-annotated routine image data in GI endoscopy and potentially other clinical imaging modalities.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Algoritmos , Área Bajo la Curva , Endoscopía Gastrointestinal/métodos , Humanos
11.
Nat Commun ; 13(1): 5711, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175413

RESUMEN

Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Suministros de Energía Eléctrica , Conocimiento , Flujo de Trabajo
12.
Nat Med ; 28(6): 1232-1239, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35469069

RESUMEN

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias/genética , Coloración y Etiquetado , Reino Unido
13.
Front Genet ; 12: 806386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35251119

RESUMEN

In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types. In addition, genetic changes in solid tumors primarily act by changing signaling pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning networks can be trained to directly predict alterations of genes and pathways across a spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue sections from 7,829 patients with 23 different tumor types from The Cancer Genome Atlas. We then trained convolutional neural networks in an end-to-end way to detect alterations in the most clinically relevant pathways or genes, directly from histology images. Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant pathways and numerous single gene alterations appear to be detectable in tissue sections, many of which have not been reported before. Interestingly, we show that the prediction performance for single gene alterations is better than that for pathway alterations. Collectively, these data demonstrate the predictability of genetic alterations directly from routine cancer histology images and show that individual genes leave a stronger morphological signature than genetic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA