Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Exp Bot ; 71(4): 1614-1627, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31846000

RESUMEN

Drought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field conditions and drought stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions during stress negatively correlated with grain yield (r= -0.48) and positively with plant height (r=0.56). Temperature values were used to perform a genome-wide association (GWA) analysis using a 45K single nucleotide polynmorphism (SNP) map. A quantitative trait locus (QTL) for canopy temperature under drought was detected on chromosome 3 and fine-mapped using a high-density imputed SNP map. The candidate genes underlying the QTL point towards differences in the regulation of guard cell solute intake for stomatal opening as the possible source of temperature variation. Genetic variation for the significant markers of the QTL was present only within the tall, low-yielding landraces adapted to drought-prone environments. The absence of variation in the shorter genotypes, which showed lower leaf temperature and higher grain yield, suggests that breeding for high grain yield in rice under paddy conditions has reduced genetic variation for stomatal response under drought.


Asunto(s)
Sequías , Oryza , Temperatura , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Oryza/genética , Fenotipo , Fitomejoramiento
2.
Plant J ; 93(4): 781-793, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237240

RESUMEN

Crop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress. There is evidence that plant resistance to pathogens can be attenuated or enhanced by abiotic stress factors. With stress tolerance research being mostly focused on plant responses to individual stresses, the understanding of a plant's ability to adapt to combined stresses is limited. In the last few years, we studied powdery mildew resistance under salt stress conditions in the model crop plant tomato with the aim to understand the requirements to achieve plant resilience to a wider array of combined abiotic and biotic stress combinations. We uncovered specific responses of tomato plants to combined salinity-pathogen stress, which varied with salinity intensity and plant resistance genes. Moreover, hormones, with their complex regulation and cross-talk, were shown to play a key role in the adaptation of tomato plants to the combined stress. In this review, we attempt to understand the complexity of plant responses to abiotic and biotic stress combinations, with a focus on tomato responses (genetic control and cross-talk of signaling pathways) to combined salinity and pathogen stresses. Further, we provide recommendations on how to design novel strategies for breeding crops with a sustained performance under diverse environmental conditions.


Asunto(s)
Enfermedades de las Plantas/microbiología , Solanum lycopersicum/fisiología , Estrés Fisiológico , Ascomicetos/patogenicidad , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/microbiología , Fitomejoramiento , Salinidad , Estrés Salino
3.
Rice (N Y) ; 16(1): 26, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212977

RESUMEN

BACKGROUND: Rice is the second most produced crop worldwide, but is highly susceptible to drought. Micro-organisms can potentially alleviate the effects of drought. The aim of the present study was to unravel the genetic factors involved in the rice-microbe interaction, and whether genetics play a role in rice drought tolerance. For this purpose, the composition of the root mycobiota was characterized in 296 rice accessions (Oryza sativa L. subsp. indica) under control and drought conditions. Genome wide association mapping (GWAS) resulted in the identification of ten significant (LOD > 4) single nucleotide polymorphisms (SNPs) associated with six root-associated fungi: Ceratosphaeria spp., Cladosporium spp., Boudiera spp., Chaetomium spp., and with a few fungi from the Rhizophydiales order. Four SNPs associated with fungi-mediated drought tolerance were also found. Genes located around those SNPs, such as a DEFENSIN-LIKE (DEFL) protein, EXOCYST TETHERING COMPLEX (EXO70), RAPID ALKALINIZATION FACTOR-LIKE (RALFL) protein, peroxidase and xylosyltransferase, have been shown to be involved in pathogen defense, abiotic stress responses and cell wall remodeling processes. Our study shows that rice genetics affects the recruitment of fungi, and that some fungi affect yield under drought. We identified candidate target genes for breeding to improve rice-fungal interactions and hence drought tolerance.

4.
BMC Plant Biol ; 12: 17, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22313736

RESUMEN

BACKGROUND: With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization. RESULTS: Leaf and tuber samples were analysed and screened for the presence of conserved and tissue dependent eQTLs. Expression QTLs present in both tissues are predominantly cis-acting whilst for tissue specific QTLs, the percentage of trans-acting QTLs increases. Tissue dependent eQTLs were assigned to functional classes and visualized in metabolic pathways. We identified a potential regulatory network on chromosome 10 involving genes crucial for maintaining circadian rhythms and controlling clock output genes. In addition, we show that the type of genetic material screened and sampling strategy applied, can have a high impact on the output of genetical genomics studies. CONCLUSIONS: Identification of tissue dependent regulatory networks based on mapped differential expression not only gives us insight in tissue dependent gene subfunctionalization but brings new insights into key biological processes and delivers targets for future haplotyping and genetic marker development.


Asunto(s)
Genoma de Planta , Hojas de la Planta/genética , Tubérculos de la Planta/genética , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Mapeo Cromosómico , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Ligamiento Genético , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos
5.
Theor Appl Genet ; 123(3): 493-508, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21590328

RESUMEN

Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato.


Asunto(s)
Mapeo Cromosómico/métodos , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Clonación Molecular , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Biblioteca de Genes , Genes de Plantas , Ligamiento Genético , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/genética , Análisis de Secuencia de ADN , Solanum tuberosum/inmunología
6.
Plants (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451774

RESUMEN

Ample nitrogen (N) is required for potato production, but its use efficiency is low. N supply strongly interacts with maturity type of the cultivar grown. We assessed whether variation among 189 cultivars grown with 75 or 185 kg available N/ha in 2 years would allow detecting quantitative trait loci (QTLs) for relevant traits. Using phenotypic data, we estimated various traits and carried out a genome-wide association study (GWAS) with kinship correction. Twenty-four traits and 10,747 markers based on single-nucleotide polymorphisms from a 20K Infinium array for 169 cultivars were combined in the analysis. N level affected most traits and their interrelations and influenced the detection of marker-trait associations; some were N-dependent, others were detected at both N levels. Ninety percent of the latter accumulated on a hotspot on Chromosome 5. Chromosomes 2 and 4 also contained regions with multiple associations. After correcting for maturity, the number of QTLs detected was much lower, especially of those common to both N levels; however, interestingly, the region on Chromosome 2 accumulated several QTLs. There is scope for marker-assisted selection for maturity, with the main purpose of improving characteristics within a narrow range of maturity types, in order to break the strong links between maturity type and traits like N use efficiency.

7.
Curr Opin Plant Biol ; 30: 47-56, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26874966

RESUMEN

Breeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as prolonged and/or increased stress intensities, CO2 increase and stress combinations, hierarchizing this information is key to accelerating crop improvement towards sustained or even increased productivity. We propose traits with high scalability to yield and crop performance that can be targeted for improvement and provide examples of recent discoveries with potential applicability in breeding. Critical to success is the integrated analysis of the phenotypes of genetic variants across different environmental variables using modelling approaches and high-throughput phenotyping.


Asunto(s)
Productos Agrícolas/genética , Cruzamiento , Cambio Climático , Productos Agrícolas/fisiología , Variación Genética/genética , Genómica
8.
Front Plant Sci ; 7: 1620, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917177

RESUMEN

This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha-1y-1 and 429 GJ ha-1y-1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of -78€ t-1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.

9.
Front Plant Sci ; 5: 207, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904607

RESUMEN

Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

10.
Theor Appl Genet ; 117(8): 1379-88, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18806994

RESUMEN

NBS profiling is a method for the identification of resistance gene analog (RGA) derived fragments. Here we report the use of NBS profiling for the genome wide mapping of RGA loci in potato. NBS profiling analyses on a minimal set of F1 genotypes of the diploid mapping population previously used to generate the ultra dense (UHD) genetic map of potato, allowed us to efficiently map polymorphic RGA fragments relative to 10,000 existing AFLP markers. In total, 34 RGA loci were mapped, of which only 13 contained RGA sequences homologous to RGAs genetically positioned at approximately similar positions in potato or tomato. The remaining RGA loci mapped either at approximate chromosomal regions previously shown to contain RGAs in potato or tomato without sharing homology to these RGAs, or mapped at positions not yet identified as RGA-containing regions. In addition to markers representing RGAs with unknown functions, segregating markers were detected that were closely linked to four functional R genes that segregate in the UHD mapping population. To explore the potential of NBS profiling in RGA transcription analyses, RNA isolated from different tissues was used as template for NBS profiling. Of all the fragments amplified approximately 15% showed putative intensity or absent/present differences between different tissues suggesting putative tissue specific RGA or R gene transcription. Putative absent/present differences between individuals were also found. In addition to being a powerful tool for generating candidate gene markers linked to R gene loci, NBS profiling, when applied to cDNA, can be instrumental in identifying those members of an R gene cluster that are transcribed, and thus putatively functional.


Asunto(s)
Mapeo Cromosómico/métodos , Genes de Plantas , Genoma de Planta , Solanum tuberosum/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Plantas/genética , Perfilación de la Expresión Génica , Marcadores Genéticos , Inmunidad Innata , Familia de Multigenes , Enfermedades de las Plantas/genética , Análisis de Secuencia de ADN , Transcripción Genética
11.
Genome ; 49(11): 1473-80, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17426762

RESUMEN

Molecular markers are effective tools to investigate genetic diversity for resistance to pathogens. NBS (nucleotide-binding site) profiling is a PCR (polymerase chain reaction)-based approach to studying genetic variability that specifically targets chromosome regions containing R-genes and R-gene analogues. We used NBS profiling to measure genetic diversity among 58 accessions of durum wheat. Mean polymorphism rates detected using MseI and AluI as restriction enzymes were 34% and 22%, respectively. Mean number of polymorphisms per enzyme-primer combination was equal to 23.8 +/- 5.9, ranging from 13 to 31 polymorphic bands. In total, 96 markers over 190 indicated a good capacity to discriminate between accessions (the polymorphic index content ranging from 0.30 to 0.50). The results obtained with NBS profiling were compared with simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) data of the same set of accessions. The genetic distances computed with 190 NBS profiling markers were in close agreement with those obtained with AFLP and SSR markers (r = 0.73 and 0.76, respectively). Our results indicate that NBS profiling provides an effective means to investigate genetic diversity in durum wheat.


Asunto(s)
Marcadores Genéticos , Variación Genética , Nucleótidos/metabolismo , Triticum/genética , Triticum/metabolismo , Sitios de Unión , Análisis por Conglomerados , Modelos Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA