Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Org Chem ; 83(23): 14568-14587, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30359025

RESUMEN

In this account, we describe the synthesis of a series of BINOL-based bis- and trisphosphoric acids 11d/e/f, which commonly feature an unusual phosphoric acid monoester motif. This motif is generated by an acid-catalyzed 5- endo- dig cyclization of the 3-alkynyl-substituted BINOL precursors to give the corresponding Furan-annelated derivatives, followed by phosphorylation of the remaining phenolic alcohols. In the cyclization reaction, we observed an unexpected partial racemization in the bis- and tris-BINOL scaffolds, leading to mixtures of diastereomers that were separated and characterized spectroscopically and by X-ray crystal structure analyses. The cyclization and racemization processes were investigated both experimentally and by DFT-calculations, showing that although the cyclization proceeds faster, the barrier for the acid-catalyzed binaphthyl-racemization is only slightly higher.

2.
Chemistry ; 23(55): 13660-13668, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28661014

RESUMEN

Here we report on a novel system based on aromatic thioethers with unique luminescence properties. Fifteen different compounds were investigated in detail on their luminescence properties using UV/Vis absorption and steady-state and time-resolved luminescence spectroscopy. Excited state lifetimes as well as quantum yields were determined, and the toxicity towards HeLa cells was investigated. Besides X-ray analyses also quantum chemical calculations were performed to gain deeper insights in the unique behavior of this facile system. The studied compounds reveal remarkable fluorescence emission ranging from 437 to 588 nm as well as phosphorescence (up to 5 µs).

3.
Chempluschem ; 87(4): e202100487, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35199494

RESUMEN

The reasons for the unusually small Bi-Te-Bi bond angle of 86.6° observed in the crystal strucure of (Et2 Bi)2 Te are investigated by quantum chemical calculations. With the help of coupled cluster theory at the CCSD(T) level it is demonstrated that the structure of an isolated monomer should have a bond angle larger than 90°, despite a Bi-Bi distance in good agreement with the value of 4.09 Šfound in the crystal structure. The discrepancy is resolved by a lengthening of the Bi-Te bond in the crystal, which is shown to be caused by partial electron transfer from neighbouring molecules to the Bi-Te σ* orbital. Through symmetry-adapted perturbation theory at the DFT-SAPT level it is shown that London dispersion interactions are highly important for the packing of molecules in the solid state and, in turn, for the small Bi-Te-Bi bond angle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA