Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 586(21): 5161-79, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18787033

RESUMEN

The rates of activation and unitary properties of Na+-activated K+ (K(Na)) currents have been found to vary substantially in different types of neurones. One class of K(Na) channels is encoded by the Slack gene. We have now determined that alternative RNA splicing gives rise to at least five different transcripts for Slack, which produce Slack channels that differ in their predicted cytoplasmic amino-termini and in their kinetic properties. Two of these, termed Slack-A channels, contain an amino-terminus domain closely resembling that of another class of K(Na) channels encoded by the Slick gene. Neuronal expression of Slack-A channels and of the previously described Slack isoform, now called Slack-B, are driven by independent promoters. Slack-A mRNAs were enriched in the brainstem and olfactory bulb and detected at significant levels in four different brain regions. When expressed in CHO cells, Slack-A channels activate rapidly upon depolarization and, in single channel recordings in Xenopus oocytes, are characterized by multiple subconductance states with only brief transient openings to the fully open state. In contrast, Slack-B channels activate slowly over hundreds of milliseconds, with openings to the fully open state that are approximately 6-fold longer than those for Slack-A channels. In numerical simulations, neurones in which outward currents are dominated by a Slack-A-like conductance adapt very rapidly to repeated or maintained stimulation over a wide range of stimulus strengths. In contrast, Slack-B currents promote rhythmic firing during maintained stimulation, and allow adaptation rate to vary with stimulus strength. Using an antibody that recognizes all amino-termini isoforms of Slack, Slack immunoreactivity is present at locations that have no Slack-B-specific staining, including olfactory bulb glomeruli and the dendrites of hippocampal neurones, suggesting that Slack channels with alternate amino-termini such as Slack-A channels are present at these locations. Our data suggest that alternative promoters of the Slack gene differentially modulate the properties of neurones.


Asunto(s)
Potenciales de Acción/fisiología , Adaptación Fisiológica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Clonación Molecular , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Canales de Potasio/genética , Canales de potasio activados por Sodio , Regiones Promotoras Genéticas , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
2.
J Neurosci ; 24(8): 1936-40, 2004 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-14985434

RESUMEN

The promoter for the kv3.1 potassium channel gene is regulated by a Ca2+-cAMP responsive element, which binds the transcription factor cAMP response element-binding protein (CREB). Kv3.1 is expressed in a tonotopic gradient within the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, where Kv3.1 levels are highest at the medial end, which corresponds to high auditory frequencies. We have compared the levels of Kv3.1, CREB, and the phosphorylated form of CREB (pCREB) in a mouse strain that maintains good hearing throughout life, CBA/J (CBA), with one that suffers early cochlear hair cell loss, C57BL/6 (BL/6). A gradient of Kv3.1 immunoreactivity in the MNTB was detected in both young (6 week) and older (8 month) CBA mice. Although no gradient of CREB was detected, pCREB-immunopositive cells were grouped together in distinct clusters along the tonotopic axis. The same pattern of Kv3.1, CREB, and pCREB localization was also found in young BL/6 mice at a time (6 weeks) when hearing is normal. In contrast, at 8 months, when hearing is impaired, the gradient of Kv3.1 was abolished. Moreover, in the older BL/6 mice there was a decrease in CREB expression along the tonotopic axis, and the pattern of pCREB labeling appeared random, with no discrete clusters of pCREB-positive cells along the tonotopic axis. Our findings are consistent with the hypothesis that ongoing activity in auditory brainstem neurons is necessary for the maintenance of Kv3.1 tonotopicity through the CREB pathway.


Asunto(s)
Vías Auditivas/fisiopatología , Tronco Encefálico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Presbiacusia/fisiopatología , Estimulación Acústica , Factores de Edad , Animales , Vías Auditivas/patología , Tronco Encefálico/patología , Cerebelo/metabolismo , Cerebelo/patología , Progresión de la Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Neuropéptidos/genética , Fosforilación , Canales de Potasio/genética , Presbiacusia/patología , Reflejo de Sobresalto/fisiología , Canales de Potasio Shaw
3.
J Neurosci ; 23(4): 1133-41, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12598601

RESUMEN

Neurons of the medial nucleus of the trapezoid body, which transmit auditory information that is used to compute the location of sounds in space, are capable of firing at high frequencies with great temporal precision. We found that elimination of the Kv3.1 gene in mice results in the loss of a high-threshold component of potassium current and failure of the neurons to follow high-frequency stimulation. A partial decrease in Kv3.1 current can be produced in wild-type neurons of the medial nucleus of the trapezoid body by activation of protein kinase C. Paradoxically, activation of protein kinase C increases temporal fidelity and the number of action potentials that are evoked by intermediate frequencies of stimulation. Computer simulations confirm that a partial decrease in Kv3.1 current is sufficient to increase the accuracy of response at intermediate frequencies while impairing responses at high frequencies. We further establish that, of the two isoforms of the Kv3.1 potassium channel that are expressed in these neurons, Kv3.1a and Kv3.1b, the decrease in Kv3.1 current is mediated by selective phosphorylation of the Kv3.1b isoform. Using site-directed mutagenesis, we identify a specific C-terminal phosphorylation site responsible for the observed difference in response of the two isoforms to protein kinase C activation. Our results suggest that modulation of Kv3.1 by phosphorylation allows auditory neurons to tune their responses to different patterns of sensory stimulation.


Asunto(s)
Potenciales de Acción , Tronco Encefálico/fisiología , Potenciales Evocados Auditivos , Neuronas/fisiología , Neuropéptidos/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Animales , Tronco Encefálico/citología , Células CHO , Células Cultivadas , Cricetinae , Conductividad Eléctrica , Cinética , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/fisiología , Técnicas de Placa-Clamp , Fosforilación , Canales de Potasio/genética , Canales de Potasio/fisiología , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/metabolismo , Serina/metabolismo , Canales de Potasio Shaw , Acetato de Tetradecanoilforbol/farmacología
4.
J Comp Neurol ; 484(1): 80-92, 2005 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-15717307

RESUMEN

Na+-activated K+ currents (K(Na)) have been reported in multiple neuronal nuclei and the properties of K(Na) vary in different cell types. We have described previously the distribution of Slack, a Na+-activated K+ channel subunit. Another recently cloned Na+-activated K+ channel is Slick, which differs from Slack in its rapid activation and its sensitivity to intracellular ATP levels. We now report the localization of Slick in the rat central nervous system using in situ and immunohistochemical techniques. As for Slack, we find that Slick is widely distributed in the brain. Specifically, strong hybridization signals and immunoreactivity were found in the brainstem, including auditory neurons such as the medial nucleus of the trapezoid body. As has also been shown for Slack, Slick is expressed in the olfactory bulb, red nucleus, facial nucleus, pontine nucleus, oculomotor nucleus, substantia nigra, deep cerebellar nuclei, vestibular nucleus, and the thalamus. Slick mRNA and protein, however, also are found in certain neurons that do not express Slack. These neurons include those of the hippocampal CA1, CA2, and CA3 regions, the dentate gyrus, supraoptic nucleus, hypothalamus, and cortical layers II, III, and V. These data suggest that Slick may function independently of Slack in these regions. Computer simulations indicate that Slick currents can cause adaptation during prolonged stimuli. Such adaptation allows a neuron to respond to high-frequency stimulation with lower-frequency firing that remains temporally locked to individual stimuli, a property seen in many auditory neurons. Although it is not yet known if Slick and Slack subunits heteromultimerize, the existence of two genes that encode K(Na), that are widely expressed in the nervous system, with both overlapping and nonoverlapping distributions, provides the basis for the reported heterogeneity in the properties of K(Na) from various neurons.


Asunto(s)
Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/metabolismo , Canales de Potasio/metabolismo , Animales , Vías Auditivas/anatomía & histología , Vías Auditivas/metabolismo , Vías Auditivas/ultraestructura , Células CHO , Simulación por Computador , Cricetinae , ADN Complementario/genética , Nervio Facial/anatomía & histología , Nervio Facial/metabolismo , Nervio Facial/ultraestructura , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Cinética , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/ultraestructura , Bulbo Olfatorio/metabolismo , Canales de potasio activados por Sodio , Sondas ARN , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura
5.
Hear Res ; 206(1-2): 133-45, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16081004

RESUMEN

The firing patterns of neurons in central auditory pathways encode specific features of sound stimuli, such as frequency, intensity and localization in space. The generation of the appropriate pattern depends, to a major extent, on the properties of the voltage-dependent potassium channels in these neurons. The mammalian auditory pathways that compute the direction of a sound source are located in the brainstem and include the connection from bushy cells in the anteroventral cochlear nucleus (AVCN) to the principal neurons of the medial nucleus of the trapezoid body (MNTB). To preserve the fidelity of timing of action potentials that is required for sound localization, these neurons express several types of potassium channels, including the Kv3 and Kv1 families of voltage-dependent channels and the Slick and Slack sodium-dependent channels. These channels determine the pattern of action potentials and the amount of neurotransmitter released during repeated stimulation. The amplitude of currents carried by one of these channels, the Kv3.1b channel, is regulated in the short term by protein phosphorylation, and in the long term, by changes in gene expression, such that the intrinsic excitability of the neurons is constantly being regulated by the ambient auditory environment.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Nervio Coclear/fisiología , Neuronas/fisiología , Canales de Potasio/metabolismo , Núcleos Vestibulares/fisiología , Animales , Núcleo Coclear/fisiología , Humanos , Fosforilación , Canales de Potasio/genética , Proteínas Quinasas/metabolismo , ARN Mensajero/metabolismo , Tiempo de Reacción , Sinapsis/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA