Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37582359

RESUMEN

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Asunto(s)
Luxación de la Cadera , Osteosclerosis , Tanquirasas , Humanos , Tanquirasas/genética , Tanquirasas/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Vía de Señalización Wnt/genética , Osteosclerosis/genética , beta Catenina/metabolismo
2.
FASEB J ; 38(4): e23491, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38363556

RESUMEN

According to recent research, metabolic-associated fatty liver disease (MAFLD) has emerged as an important underlying etiology of hepatocellular carcinoma (HCC). However, the molecular mechanism of MAFLD-HCC is still unclear. Tumor necrosis factor receptor-associated factor 2 (TRAF2) is the key molecule to mediate the signal of inflammatory NF-κB pathway. This study aims to investigate the potential dysregulation of TRAF2 and its biological function in MAFLD-HCC. Huh7 TRAF2-/- demonstrated increased tumor formation ability compared to huh7 TRAF2+/+ when stimulated with transforming growth factor-ß (TGF-ß). The decisive role of TGF-ß in the development of MAFLD-HCC was confirmed through the specific depletion of TGF-ß receptor II gene in the hepatocytes (Tgfbr2ΔHep) of mice. In TRAF2-/- cells treated with TGF-ß, both the glycolysis rate and lipid synthesis were enhanced. We proved the signal of the mechanistic target of rapamycin complex 1 (mTORC1) could be activated in the presence of TGF-ß, and was enhanced in TRAF2-/- cells. The coimmunoprecipitation (co-IP) experiments revealed that TRAF2 fortified the Smurf2-mediated ubiquitination degradation of AXIN1. Hence, TRAF2 depletion resulted in increased Smad7 degradation induced by AXIN1, thus promoting the TGF-ß signal. We also discovered that PLX-4720 could bind with AXIN1 and restrained the tumor proliferation of TRAF2-/- in mice fed with high-fat diet (HFD). Our findings indicate that TRAF2 plays a significant role in the pathogenesis of MAFLD-HCC. The reduction of TRAF2 expression leads to the enhancement of the TGF-ß-mTORC1 pathway by facilitating AXIN1-mediated Smad7 degradation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatocitos/metabolismo , Proteína smad7/genética , Proteína smad7/metabolismo
3.
Cell Commun Signal ; 22(1): 77, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291457

RESUMEN

AXIN1, has been initially identified as a prominent antagonist within the WNT/ß-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/ß-catenin, Hippo, TGFß, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Ontología de Genes , Proteína Axina/genética , Proteína Axina/metabolismo , Vía de Señalización Wnt/genética , Fosforilación , Proteolisis , beta Catenina/metabolismo , Mamíferos/metabolismo
4.
Mol Cell Biochem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748384

RESUMEN

Axis inhibitor protein 1 (AXIN1) is a protein recognized for inhibiting tumor growth and is commonly involved in cancer development. In this study, we explored the potential molecular mechanisms that connect alternative splicing of AXIN1 to the metastasis of hepatocellular carcinoma (HCC). Transcriptome sequencing, RT‒PCR, qPCR and Western blotting were utilized to determine the expression levels of AXIN1 in human HCC tissues and HCC cells. The effects of the AXIN1 exon 9 alternative splice isoform and SRSF9 on the migration and invasion of HCC cells were assessed through wound healing and Transwell assays, respectively. The interaction between SRSF9 and AXIN1 was investigated using UV crosslink RNA immunoprecipitation, RNA pulldown, and RNA immunoprecipitation assays. Furthermore, the involvement of the AXIN1 isoform and SRSF9 in HCC metastasis was validated in a nude mouse model. AXIN1-L (exon 9 including) expression was downregulated, while AXIN1-S (exon 9 skipping) was upregulated in HCC. SRSF9 promotes the production of AXIN1-S by interacting with the sequence of exons 8 and 10 of AXIN1. AXIN1-S significantly promoted HCC cells migration and invasion by activating the Wnt pathway, while the opposite effects were observed for AXIN1-L. In vivo experiments demonstrated that AXIN1-L inhibited HCC metastasis, whereas SRSF9 promoted HCC metastasis in part by regulating the level of AXIN1-S. AXIN1, a tumor suppressor protein that targets the AXIN1/Wnt/ß-catenin signaling axis, may be a promising prognostic factor and a valuable therapeutic target for HCC.

5.
Tohoku J Exp Med ; 262(4): 269-276, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233113

RESUMEN

Osimertinib, a promising and approved third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is a standard strategy for EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, developed resistance is unavoidable, which reduces its long-term effectiveness. In this study, RNA sequencing was performed to analyze differentially expressed genes (DEGs). The PrognoScan database and Gene Expression Profiling Interactive Analysis (GEPIA) were used to identify the key genes for clinical prognosis and gene correlation respectively. Protein expression was determined by western blot analysis. Cell viability assay and Ki67 staining were used to evaluate the effect of osimertinib on tumor cells. Finally, we screened out two hub genes, myelocytomatosis oncogene (Myc) and axis inhibition protein 1 (Axin1), upregulated in three osimertinib-resistant cell lines through RNA sequencing and bioinformatics analysis. Next, cell experiment confirmed that expression of C-MYC and AXIN1 were elevated in different EGFR mutant NSCLC cell lines with acquired resistance to osimertinib, compared with their corresponding parental cell lines. Furthermore, we demonstrated that AXIN1 upregulated the expression of C-MYC and mediated the acquired resistance of EGFR mutant NSCLC cells to osimertinib in vitro. In conclusion, AXIN1 affected the sensitivity of EGFR mutant NSCLC to osimertinib via regulating C-MYC expression in vitro. Targeting AXIN1/MYC signaling may be a potential new strategy for overcoming acquired resistance to osimertinib.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Proteína Axina , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Receptores ErbB , Regulación Neoplásica de la Expresión Génica , Indoles , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas c-myc , Pirimidinas , Humanos , Acrilamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Compuestos de Anilina/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mutación/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
6.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396644

RESUMEN

Germline variants in the FOXE1 transcription factor have been associated with thyroid ectopy, cleft palate (CP) and thyroid cancer (TC). Here, we aimed to clarify the role of FOXE1 in Portuguese families (F1 and F2) with members diagnosed with malignant struma ovarii (MSO), an ovarian teratoma with ectopic malignant thyroid tissue, papillary TC (PTC) and CP. Two rare germline heterozygous variants in the FOXE1 promoter were identified: F1) c.-522G>C, in the proband (MSO) and her mother (asymptomatic); F2) c.9C>T, in the proband (PTC), her sister and her mother (CP). Functional studies using rat normal thyroid (PCCL3) and human PTC (TPC-1) cells revealed that c.9C>T decreased FOXE1 promoter transcriptional activity in both cell models, while c.-522G>C led to opposing activities in the two models, when compared to the wild type. Immunohistochemistry and RT-qPCR analyses of patients' thyroid tumours revealed lower FOXE1 expression compared to adjacent normal and hyperplastic thyroid tissues. The patient with MSO also harboured a novel germline AXIN1 variant, presenting a loss of heterozygosity in its benign and malignant teratoma tissues and observable ß-catenin cytoplasmic accumulation. The sequencing of the F1 (MSO) and F2 (PTC) probands' tumours unveiled somatic BRAF and HRAS variants, respectively. Germline FOXE1 and AXIN1 variants might have a role in thyroid ectopy and cleft palate, which, together with MAPK pathway activation, may contribute to tumours' malignant transformation.


Asunto(s)
Fisura del Paladar , Quiste Dermoide , Factores de Transcripción Forkhead , Neoplasias Ováricas , Estruma Ovárico , Neoplasias de la Tiroides , Animales , Femenino , Humanos , Ratas , Fisura del Paladar/genética , Quiste Dermoide/genética , Factores de Transcripción Forkhead/genética , Neoplasias Ováricas/metabolismo , Estruma Ovárico/genética , Estruma Ovárico/metabolismo , Estruma Ovárico/patología , Neoplasias de la Tiroides/patología
7.
Dev Biol ; 481: 226-237, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748730

RESUMEN

Zebrafish can achieve scar-free healing of heart injuries, and robustly replace all cardiomyocytes lost to injury via dedifferentiation and proliferation of mature cardiomyocytes. Previous studies suggested that Wnt/ß-catenin signaling is active in the injured zebrafish heart, where it induces fibrosis and prevents cardiomyocyte cell cycling. Here, via targeting the destruction complex of the Wnt/ß-catenin pathway with pharmacological and genetic tools, we demonstrate that Wnt/ß-catenin activity is required for cardiomyocyte proliferation and dedifferentiation, as well as for maturation of the scar during regeneration. Using cardiomyocyte-specific conditional inhibition of the pathway, we show that Wnt/ß-catenin signaling acts cell-autonomously to promote cardiomyocyte proliferation. Our results stand in contrast to previous reports and rather support a model in which Wnt/ß-catenin signaling plays a positive role during heart regeneration in zebrafish.


Asunto(s)
Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular , Pez Cebra/genética , Proteínas de Pez Cebra/genética , beta Catenina/genética
8.
Mol Microbiol ; 118(6): 731-743, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308071

RESUMEN

Acute respiratory infection by influenza virus is a persistent and pervasive public health problem. Antiviral innate immunity initiated by type I interferon (IFN) is the first responder to pathogen invasion and provides the first line of defense. We discovered that Axin1, a scaffold protein, was reduced during influenza virus infection. We also found that overexpression of Axin1 and the chemical stabilizer of Axin1, XAV939, reduced influenza virus replication in lung epithelial cells. This effect was also observed with respiratory syncytial virus and vesicular stomatitis virus. Axin1 boosted type I IFN response to influenza virus infection and activated JNK/c-Jun and Smad3 signaling. XAV939 protected mice from influenza virus infection. Thus, our studies provide new mechanistic insights into the regulation of the type I IFN response and present a new potential therapeutic of targeting Axin1 against influenza virus infection.


Asunto(s)
Proteína Axina , Gripe Humana , Interferones , Animales , Humanos , Ratones , Proteína Axina/metabolismo , Células Epiteliales , Inmunidad Innata , Gripe Humana/inmunología , Gripe Humana/metabolismo , Interferones/metabolismo , Replicación Viral
9.
J Hepatol ; 79(3): 704-716, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37201672

RESUMEN

BACKGROUND & AIMS: Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation. METHODS: We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations. We then modelled RSK2 inactivation in mice in various mutational contexts recapitulating or not those naturally found in human HCC, using transgenic mice and liver-specific carcinogens. These models were monitored for liver tumour appearance and subjected to phenotypic and transcriptomic analyses. Functional consequences of RSK2 rescue were also investigated in a human RSK2-deficient HCC cell line. RESULTS: RSK2-inactivating mutations are specific to human HCC and frequently co-occur with AXIN1-inactivating or ß-catenin-activating mutations. Modelling of these co-occurrences in mice showed a cooperative effect in promoting liver tumours with transcriptomic profiles recapitulating those of human HCCs. By contrast, there was no cooperation in liver tumour induction between RSK2 loss and BRAF-activating mutations chemically induced by diethylnitrosamine. In human liver cancer cells, we also showed that RSK2 inactivation confers some dependency to the activation of RAS/MAPK signalling that can be targeted by MEK inhibitors. CONCLUSIONS: Our study demonstrates the tumour suppressor role of RSK2 and its specific synergistic effect in hepatocarcinogenesis when its loss of function is specifically combined with AXIN1 inactivation or ß-catenin activation. Furthermore, we identified the RAS/MAPK pathway as a potential therapeutic target for RSK2-inactivated liver tumours. IMPACT AND IMPLICATIONS: This study demonstrated the tumour suppressor role of RSK2 in the liver and showed that its inactivation specifically synergises with AXIN1 inactivation or ß-catenin activation to promote the development of HCC with similar transcriptomic profiles as found in humans. Furthermore, this study highlights that activation of the RAS/MAPK pathway is one of the key signalling pathways mediating the oncogenic effect of RSK2 inactivation that can be targeted with already available anti-MEK therapies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Proteína Axina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Mutación , Transducción de Señal
10.
J Clin Lab Anal ; 37(1): e24804, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36510340

RESUMEN

BACKGROUND: Papillary thyroid cancer (PTC) is the most common type of thyroid cancer which its precise etiology remains unknown. However, environmental and genetic factors contribute to the etiology of PTC. Axis inhibition protein 1 (Axin1) is a scaffold protein that exerts its role as a tumor suppressor. In addition, Cathepsin B (Ctsb) is a cysteine protease with higher expression in several types of tumors. Therefore, the aim of this study was to investigate the possible association of AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms with PTC susceptibility. MATERIALS & METHODS: In total, 156 PTC patients and 158 sex-, age-, and BMI-matched control subjects were enrolled in the study. AXIN1 rs12921862 C/A and rs1805105 G/A and CTSB rs12898 G/A polymorphisms were genotyped using the PCR-RFLP method. RESULTS: There was a relationship between AXIN1 rs12921862 C/A polymorphism and an increased risk of PTC in all genetic models except the overdominant model. The AXIN1 rs1805105 G/A polymorphism was associated with an increased PTC risk only in codominant and overdominant models. The frequency of AXIN1 Ars12921862 Ars1805105 haplotype was higher in the PTC group and also this haplotype was associated with an increased risk of PTC. Moreover, the AXIN1 rs12921862 C/A polymorphism was not associated with PTC clinical and pathological findings, but AXIN1 rs1805105 G/A polymorphism was associated with almost three folds of larger tumor size (≥1 cm). There was no association between CTSB rs12898 G/A polymorphism and PTC and its findings. CONCLUSION: The AXIN1 rs12921862 C/A and rs1805105 G/A polymorphisms were associated with PTC. AXIN1 rs1805105 G/A polymorphism was associated with higher tumor size.


Asunto(s)
Polimorfismo de Nucleótido Simple , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Polimorfismo de Nucleótido Simple/genética , Estudios de Casos y Controles , Catepsina B/genética , Proteína Axina/genética , Genotipo , Neoplasias de la Tiroides/genética , Predisposición Genética a la Enfermedad/genética
11.
Biochem Biophys Res Commun ; 611: 183-189, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490658

RESUMEN

We previously reported that the canonical Wnt signaling pathway is activated during compensatory islet hyperplasia in prediabetic mice. Here, we aimed to expand our knowledge concerning the Wnt signaling partners and modulators involved in this process. We report here that Axin1, Axin2, and DACT1, inhibitors of the canonical Wnt signaling pathway, displayed no change in their expression, while GSK-3ß, a multi-functional kinase that acts as a negative regulator of this pathway as well as affects insulin secretion/action, was up-regulated in hyperplastic islets of prediabetic mice. We also observed that COUP-TFII, a protein that acts positively on Wnt-target genes related to cell proliferation, displays a significant increase in gene expression and protein content and is highly immunolabeled in islet cell nuclei of prediabetic mice compared to control islets. These findings suggest that GSK-3ß and COUP-TFII may play a role in beta-cell dysfunction and hyperplasia during type 2 prediabetes.


Asunto(s)
Estado Prediabético , Vía de Señalización Wnt , Animales , Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hiperplasia , Ratones , Estado Prediabético/genética , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
12.
Mol Cell Biochem ; 477(12): 2829-2839, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35670901

RESUMEN

Hypoxia can cause Epithelial-mesenchymal transition (EMT) in renal tubular cells, and in turn, renal fibrosis. We tested the expression of TRIM46, a member of tripartite motif-containing (TRIM) family proteins, and mesenchymal markers under hypoxia. Our results showed that hypoxia significantly enhanced expression of TRIM46 in HK2 human renal proximal tubular epithelial cells. Our data further showed that hypoxia led to upregulated expression of mesenchymal markers including α-smooth muscle actin, vimentin, and Snail, and downregulated expression of epithelial marker E-cadherin, coupled with an increased abundance of nuclear ß-catenin. However, such effects were reversed when TRIM46 expression was knocked down. TRIM46 overexpression had similar effects as hypoxia exposure, and such effects were reversed when cells were treated with XAV-939, a selective inhibitor for ß-catenin. Furthermore, we found that TRIM46 promoted ubiquitination and proteasomal degradation of Axin1 protein, a robust negative regulator of Wnt/ß-catenin signaling activity. Finally, increased TRIM46 coupled with decreased Axin1 was observed in a rat renal fibrosis model. These data suggest a novel mechanism contributing to EMT that mediates hypoxia-induced renal fibrosis. Our results suggest that selectively inhibiting this pathway that activates fibrosis in human kidney may lead to development of a novel therapeutic approach for managing this disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Vía de Señalización Wnt , Animales , Humanos , Ratas , Proteína Axina/genética , beta Catenina/metabolismo , Fibrosis , Hipoxia , Enfermedades Renales/metabolismo
13.
Biotechnol Appl Biochem ; 69(4): 1576-1586, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34319618

RESUMEN

The high incidence rate of CRC demands early diagnosis of the disease and readiness of diagnostic biomarker. In present study, we have investigated c-MYC, AXIN1, and COL11A1 expression levels in course of CRC progression and their correlation with demographics and clinical risk factors. Fifty-five tumors and 41 normal tissues were obtained from Tumor Bank of Iran, total RNA was extracted, cDNA was synthesized, and RT-qPCR was performed. Results were analyzed using Rest 2009 and SPSS software. Analysis at mRNA level showed upregulation of the two genes; c-MYC with a p-value of 0.001 and COL11A1 with an observed p-value of 0.02, while a p-value of 0.04 indicated AXIN1 downregulation. The observed overexpression of COL11A1 in stage 0 compared to other stages of CRC asserts importance of this gene in CRC prognosis. Moreover, statistical analysis confirms a significant correlation between expression of these genes and several clinical risk factors of CRC. Our study supports the importance of the studied genes and provides further information regarding the molecular mechanism of CRC. Further studies on these genes could elucidate their pivotal role for both early detection and/or diagnosis of CRC in addition to have important biomarkers for CRC management available.


Asunto(s)
Neoplasias Colorrectales , Proteína Axina/genética , Proteína Axina/metabolismo , Biomarcadores de Tumor/genética , Colágeno Tipo XI/genética , Colágeno Tipo XI/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico , Proteínas Proto-Oncogénicas c-myc , ARN Mensajero , Regulación hacia Arriba
14.
Drug Dev Res ; 83(5): 1190-1200, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35489084

RESUMEN

M6A reader YTH structural domain family 2 (YTHDF2) has been recognized to play an oncogenic role in numerous tumors, but its role in cervical cancer has not been extensively discussed yet. This paper was designed to explore the role of YTHDF2 in cervical cancer and identify its underlying mechanism. The expression of YTHDF2 was first determined in cervical cancer cells by quantitative reverse-transcription polymerase chain reaction and western blot. Then, the migration, invasion, and epithelial-mesenchymal transition (EMT) process were observed in YTHDF2-knockdown Hela cells using wound healing, transwell and immunofluorescence assays. The cisplatin chemosensitivity of Hela cells was also investigated by assessing cell activity with cell counting kit-8 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling). After MeRIP-Seq assay and actinomycin D treatment to confirm the binding relationship between YTHDF2 and AXIN1, the migration, invasion, EMT process, and cisplatin chemosensitivity were assessed again in Hela cells silenced by YTHDF2 and AXIN1 or treated with Wnt agonist. YTHDF2 was increased in cervical cancer cells, and depletion of YTHDF2 led to reduced migration, invasion and EMT process but enhanced chemosensitivity of cisplatin in Hela cells. Furthermore, YTHDF2 could bind to and stabilize the expression of AXIN1. When the YTHDF2-knockdown Hela cells were further transfected with AXIN1 knockdown or treated with Wnt agonist, the effects of YTHDF2 knockdown on the migration, invasion and EMT process were partially abolished, together with reduced cisplatin chemosensitivity. To sum up, we reported that YTHDF2 interference could suppress the EMT of cervical cancer cells and enhance cisplatin chemosensitivity by regulating AXIN1.


Asunto(s)
Proteína Axina , Transición Epitelial-Mesenquimal , Proteínas de Unión al ARN , Neoplasias del Cuello Uterino , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cisplatino/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo
15.
Mol Cancer ; 20(1): 158, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863211

RESUMEN

BACKGROUND: Circular RNA (circRNA), a subclass of non-coding RNA, plays a critical role in cancer tumorigenesis and metastasis. It has been suggested that circRNA acts as a microRNA sponge or a scaffold to interact with protein complexes; however, its full range of functions remains elusive. Recently, some circRNAs have been found to have coding potential. METHODS: To investigate the role of circRNAs in gastric cancer (GC), parallel sequencing was performed using five paired GC samples. Differentially expressed circAXIN1 was proposed to encode a novel protein. FLAG-tagged circRNA overexpression plasmid construction, immunoblotting, mass spectrometry, and luciferase reporter analyses were applied to confirm the coding potential of circAXIN1. Gain- and loss-of-function studies were conducted to study the oncogenic role of circAXIN1 and AXIN1-295aa on the proliferation, migration, invasion, and metastasis of GC cells in vitro and in vivo. The competitive interaction between AXIN1-295aa and adenomatous polyposis coli (APC) was investigated by immunoprecipitation analyses. Wnt signaling activity was observed using a Top/Fopflash assay, real-time quantitative RT-PCR, immunoblotting, immunofluorescence staining, and chromatin immunoprecipitation. RESULTS: CircAXIN1 is highly expressed in GC tissues compared with its expression in paired adjacent normal gastric tissues. CircAXIN1 encodes a 295 amino acid (aa) novel protein, which was named AXIN1-295aa. CircAXIN1 overexpression enhances the cell proliferation, migration, and invasion of GC cells, while the knockdown of circAXIN1 inhibits the malignant behaviors of GC cells in vitro and in vivo. Mechanistically, AXIN1-295aa competitively interacts with APC, leading to dysfunction of the "destruction complex" of the Wnt pathway. Released ß-catenin translocates to the nucleus and binds to the TCF consensus site on the promoter, inducing downstream gene expression. CONCLUSION: CircAXIN1 encodes a novel protein, AXIN1-295aa. AXIN1-295aa functions as an oncogenic protein, activating the Wnt signaling pathway to promote GC tumorigenesis and progression, suggesting a potential therapeutic target for GC.


Asunto(s)
Proteína Axina/genética , Regulación Neoplásica de la Expresión Génica , ARN Circular/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Proteína Axina/química , Proteína Axina/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Biología Computacional , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Metástasis Linfática , Ratones , Modelos Biológicos , Estadificación de Neoplasias , Conformación Proteica , Neoplasias Gástricas/patología
16.
Cancer Cell Int ; 21(1): 597, 2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743698

RESUMEN

BACKGROUND: Aberrant autophagy and preternatural elevated glycolysis are prevalent in bladder cancer (BLCA) and are both related to malignant progression. However, the regulatory relationship between autophagy and glycolytic metabolism remains largely unknown. We imitated starvation conditions in the tumour microenvironment and found significantly increased levels of autophagy and aerobic glycolysis, which both regulated the progression of BLCA cells. We further explored the regulatory relationships and mechanisms between them. METHODS: We used immunoblotting, immunofluorescence and transmission electron microscopy to detect autophagy levels in BLCA cells under different treatments. Lactate and glucose concentration detection demonstrated changes in glycolysis. The expression of lactate dehydrogenase A (LDHA) was detected at the transcriptional and translational levels and was also silenced by small interfering RNA, and the effects on malignant progression were further tested. The underlying mechanisms of signalling pathways were evaluated by western blot, immunofluorescence and immunoprecipitation assays. RESULTS: Starvation induced autophagy, regulated glycolysis by upregulating the expression of LDHA and caused progressive changes in BLCA cells. Mechanistically, after starvation, the ubiquitination modification of Axin1 increased, and Axin1 combined with P62 was further degraded by the autophagy-lysosome pathway. Liberated ß-catenin nuclear translocation increased, binding with LEF1/TCF4 and promoting LDHA transcriptional expression. Additionally, high expression of LDHA was observed in cancer tissues and was positively related to progression. CONCLUSION: Our study demonstrated that starvation-induced autophagy modulates glucose metabolic reprogramming by enhancing Axin1 degradation and ß-catenin nuclear translocation in BLCA, which promotes the transcriptional expression of LDHA and further malignant progression.

17.
Neurochem Res ; 46(2): 230-240, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33241432

RESUMEN

Long non-coding RNA (lncRNA) nuclear-enriched assembly transcript 1 (NEAT1) has been reported to be highly expressed in Parkinson's disease (PD). However, the mechanism of NEAT1 in PD progression has not been fully elucidated. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine injection (MPTP) was used to construct PD mouse models in vivo, and 1-methyl-4-phenyl pyridine (MPP+) was used to build PD cell models in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to test the expression of NEAT1, microRNA (miR)-212-3p and axis inhibition protein 1 (AXIN1). The viability, apoptosis and inflammation of cells were determined using cell counting kit 8 (CCK8) assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Then, the protein levels of apoptosis-related markers and AXIN1 were measured by western blot (WB) analysis. Furthermore, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between miR-212-3p and NEAT1 or AXIN1. NEAT1 was upregulated in PD mouse models and cell models. Function experiments confirmed that NEAT1 knockdown could promote the viability, suppress the apoptosis and inflammation of MPP+-stimulated SK-N-SH cells to restrain PD progression. MiR-212-3p was downregulated in PD, and its inhibitor could reverse the suppression effect of NEAT1 knockdown on PD progression. Additionally, AXIN1 was a target of miR-212-3p, and its overexpression could invert the inhibition effect of miR-212-3p mimic on PD progression. Furthermore, AXIN1 expression was inhibited by NEAT1 silencing and promoted by NEAT1 overexpression, while these effect could be recovered by miR-212-3p inhibitor and mimic, respectively. Our results demonstrated that NEAT1 knockdown suppressed PD progression through regulating the miR-212-3p/AXIN1 pathway, indicating that NEAT1 might be a therapeutic target for neuroprotection in PD.


Asunto(s)
Proteína Axina/metabolismo , MicroARNs/metabolismo , Enfermedad de Parkinson/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/metabolismo , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , Regulación hacia Arriba
18.
Exp Cell Res ; 387(2): 111750, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31786079

RESUMEN

OBJECTIVE: Lymphoma, a malignant tumor, is mainly characterized by painless lymph node enlargement and hepatosplenomegaly. At present, lymphoma is mainly treated by radiation, chemical drugs, bone marrow transplantation and surgery. However, due to the high degree of heterogeneity, lymphomas are highly different in terms of treatment intensity and prognosis. This study is designed to investigate the function of tripartite motif-containing 11 (TRIM11) in lymphomas. METHODS: The expression of TRIM11 in lymphoma tissues and multiple lymphoma cell lines was respectively detected by microarray immunohistochemistry, real-time PCR and Western blotting. After TRIM11 knockdown, overexpression, or ß-catenin inhibitor XAV939 treatment, proliferation, apoptosis and cell cycle progression, as well as expression of related-genes were detected. Next, Co-Immunoprecipitation (Co-IP) and ubiquitination detection were performed. RESULTS: Elevated expression of tripartite motif-containing 11 (TRIM11) was observed in lymphoma tissues and multiple lymphoma cell lines (Raji, Jurkat, U937 and Hut78). Knockdown of TRIM11 in lymphoma cells significantly suppressed cell proliferation and prevented cell cycle progression from entering S or G2 phase. Concurrently, the expression of ß-catenin, Cyclin D1 and c-Myc proteins in TRIM11-silenced lymphoma cells was decreased, while Axin1 was increased. In addition, TRIM11 overexpression had an opposite effect to TRIM11 knockdown, and a ß-catenin inhibitor, XAV939, potently attenuated the induction of TRIM11 on lymphoma cells. Co-IP assay showed the interaction of TRIM11 and Axin1, and TRIM11 knockdown inhibited Axin1 ubiquitination degradation. CONCLUSIONS: Together all, the results suggested that TRIM11 may be an oncogene in lymphomas, which involving the activation of the ß-catenin signaling and the ubiquitination degradation of Axin1.


Asunto(s)
Proteína Axina/metabolismo , Transducción de Señal/fisiología , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Humanos , Células Jurkat , Células U937
19.
Am J Physiol Cell Physiol ; 318(3): C695-C703, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31967859

RESUMEN

The dysregulation of ubiquitin ligase is the cause of many human diseases. Tripartite motif protein 32 (TRIM32) is an E3 ubiquitin ligase whose role in nucleus pulposus (NP) cell apoptosis is unclear. The expression of TRIM family protein and ß-catenin in 40 NP tissue samples was detected by RT-PCR. Interleukin (IL)-1ß or tumor necrosis factor (TNF)-α was used to treat rat NP cells. Knockdown and overexpression of Trim32 were achieved using specific siRNA and recombinant plasmids. Western blotting, RT-PCR, and flow cytometry were used to assess the expression of TRIM32/ß-catenin and the apoptosis rate of NP cells. Coimmunoprecipitation was adopted to analyze the possible interactions between AXIN1 and TRIM32. In clinical samples, TRIM32 expression was of positive relevance with the expression of CTNNB1 (ß-catenin). In vitro, apoptosis of IL-1ß- or TNF-α-treated rat NP cells was induced through upregulated Trim32 expression and activated ß-catenin signaling, whereas Trim32 siRNA and inhibition of ß-catenin reversed the induction effect of cytokines. Further studies indicated that TRIM32 activated the ß-catenin signaling pathway through ubiquitination of AXIN1, thereby regulating apoptosis. Collectively, this study reveals that TRIM32 promotes inflammatory factor-induced apoptosis of rat NP cells, in part by direct degradation of AXIN1 to trigger ß-catenin signaling.


Asunto(s)
Apoptosis/fisiología , Proteína Axina/metabolismo , Núcleo Pulposo/metabolismo , Factores de Transcripción/biosíntesis , Proteínas de Motivos Tripartitos/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , beta Catenina/metabolismo , Adulto , Animales , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Núcleo Pulposo/patología , Ratas , Ratas Sprague-Dawley , Ubiquitinación/fisiología
20.
Am J Physiol Endocrinol Metab ; 318(3): E330-E342, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846370

RESUMEN

Contraction stimulates skeletal muscle glucose uptake predominantly through activation of AMP-activated protein kinase (AMPK) and Rac1. However, the molecular details of how contraction activates these signaling proteins are not clear. Recently, Axin1 has been shown to form a complex with AMPK and liver kinase B1 during glucose starvation-dependent activation of AMPK. Here, we demonstrate that electrical pulse-stimulated (EPS) contraction of C2C12 myotubes or treadmill exercise of C57BL/6 mice enhanced reciprocal coimmunoprecipitation of Axin1 and AMPK from myotube lysates or gastrocnemius muscle tissue. Interestingly, EPS or exercise upregulated total cellular Axin1 levels in an AMPK-dependent manner in C2C12 myotubes and gastrocnemius mouse muscle, respectively. Also, direct activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide treatment of C2C12 myotubes or gastrocnemius muscle elevated Axin1 protein levels. On the other hand, siRNA-mediated Axin1 knockdown lessened activation of AMPK in contracted myotubes. Further, AMPK inhibition with compound C or siRNA-mediated knockdown of AMPK or Axin1 blocked contraction-induced GTP loading of Rac1, p21-activated kinase phosphorylation, and contraction-stimulated glucose uptake. In summary, our results suggest that an AMPK/Axin1-Rac1 signaling pathway mediates contraction-stimulated skeletal muscle glucose uptake.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Proteína Axina/fisiología , Glucosa/metabolismo , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Neuropéptidos/fisiología , Transducción de Señal/fisiología , Proteína de Unión al GTP rac1/fisiología , Proteínas Quinasas Activadas por AMP/genética , Animales , Proteína Axina/genética , Línea Celular , Estimulación Eléctrica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal/genética , Proteína de Unión al GTP rac1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA