Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205138

RESUMEN

This paper presents a new edge detection process implemented in an embedded IoT device called Bee Smart Detection node to detect catastrophic apiary events. Such events include swarming, queen loss, and the detection of Colony Collapse Disorder (CCD) conditions. Two deep learning sub-processes are used for this purpose. The first uses a fuzzy multi-layered neural network of variable depths called fuzzy-stranded-NN to detect CCD conditions based on temperature and humidity measurements inside the beehive. The second utilizes a deep learning CNN model to detect swarming and queen loss cases based on sound recordings. The proposed processes have been implemented into autonomous Bee Smart Detection IoT devices that transmit their measurements and the detection results to the cloud over Wi-Fi. The BeeSD devices have been tested for easy-to-use functionality, autonomous operation, deep learning model inference accuracy, and inference execution speeds. The author presents the experimental results of the fuzzy-stranded-NN model for detecting critical conditions and deep learning CNN models for detecting swarming and queen loss. From the presented experimental results, the stranded-NN achieved accuracy results up to 95%, while the ResNet-50 model presented accuracy results up to 99% for detecting swarming or queen loss events. The ResNet-18 model is also the fastest inference speed replacement of the ResNet-50 model, achieving up to 93% accuracy results. Finally, cross-comparison of the deep learning models with machine learning ones shows that deep learning models can provide at least 3-5% better accuracy results.

2.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571559

RESUMEN

In the pursuit of optimizing the efficiency, flexibility, and adaptability of agricultural practices, human-robot interaction (HRI) has emerged in agriculture. Enabled by the ongoing advancement in information and communication technologies, this approach aspires to overcome the challenges originating from the inherent complex agricultural environments. Τhis paper systematically reviews the scholarly literature to capture the current progress and trends in this promising field as well as identify future research directions. It can be inferred that there is a growing interest in this field, which relies on combining perspectives from several disciplines to obtain a holistic understanding. The subject of the selected papers is mainly synergistic target detection, while simulation was the main methodology. Furthermore, melons, grapes, and strawberries were the crops with the highest interest for HRI applications. Finally, collaboration and cooperation were the most preferred interaction modes, with various levels of automation being examined. On all occasions, the synergy of humans and robots demonstrated the best results in terms of system performance, physical workload of workers, and time needed to execute the performed tasks. However, despite the associated progress, there is still a long way to go towards establishing viable, functional, and safe human-robot interactive systems.


Asunto(s)
Robótica , Humanos , Robótica/métodos , Carga de Trabajo , Agricultura , Comunicación
3.
Sensors (Basel) ; 23(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631663

RESUMEN

Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible objects, processes, or systems within the digital space, leveraging their capability to simulate and forecast real-world behavior. They have found valuable applications in smart farming, facilitating a comprehensive virtual replica of a farm that encompasses vital aspects such as crop cultivation, soil composition, and prevailing weather conditions. By amalgamating data from diverse sources, including soil, plants condition, environmental sensor networks, meteorological predictions, and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and up-to-date visualization of their agricultural domains empowering them to make well-informed and timely choices concerning critical aspects like efficient irrigation plans, optimal fertilization methods, and effective pest management strategies, enhancing overall farm productivity and sustainability. This research paper aims to present a comprehensive overview of the contemporary state of research on digital twins in smart farming, including crop modelling, precision agriculture, and associated technologies, while exploring their potential applications and their impact on agricultural practices, addressing the challenges and limitations such as data privacy concerns, the need for high-quality data for accurate simulations and predictions, and the complexity of integrating multiple data sources. Lastly, the paper explores the prospects of digital twins in agriculture, highlighting potential avenues for future research and advancement in this domain.


Asunto(s)
Agricultura , Suelo , Granjas , Tecnología , Exactitud de los Datos
4.
Sensors (Basel) ; 22(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684730

RESUMEN

This research aims to analyse the applications of IoT in agriculture and to compare the most widely used IoT platforms. The problem of determining the most appropriate IoT system depends on many factors, often expressed by incomplete and uncertain estimates. In order to find a feasible decision, this study develops a multi-criteria framework for IoT solution selection in a fuzzy environment. In the proposed framework, a new modification of the Multi-Attribute Border approximation Area Comparison (MABAC) method with a specific distance measure via intuitionistic fuzzy values has been presented as a decision analysis method. The new technique is more precise than existing crisp and fuzzy analogues, as it includes the three components of intuitionistic numbers (degree of membership, degree of non-membership and hesitancy degree) and the relationships between them. The effectiveness of the new decision-making framework has been verified through an illustrative example of ranking IoT platforms.

5.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36298261

RESUMEN

Geomatics is important for agriculture 4.0; in fact, it uses different types of data (remote sensing from satellites, Unmanned Aerial Vehicles-UAVs, GNSS, photogrammetry, laser scanners and other types of data) and therefore it uses data fusion techniques depending on the different applications to be carried out. This work aims to present on a study area concerning the integration of data acquired (using data fusion techniques) from remote sensing techniques, UAVs, autonomous driving machines and data fusion, all reprocessed and visualised in terms of results obtained through GIS (Geographic Information System). In this work we emphasize the importance of the integration of different methodologies and data fusion techniques, managing data of a different nature acquired with different methodologies to optimise vineyard cultivation and production. In particular, in this note we applied (focusing on a vineyard) geomatics-type methodologies developed in other works and integrated here to be used and optimised in order to make a contribution to agriculture 4.0. More specifically, we used the NDVI (Normalized Difference Vegetation Index) applied to multispectral satellite images and drone images (suitably combined) to identify the vigour of the plants. We then used an autonomous guided vehicle (equipped with sensors and monitoring systems) which, by estimating the optimal path, allows us to optimise fertilisation, irrigation, etc., by data fusion techniques using various types of sensors. Everything is visualised on a GIS to improve the management of the field according to its potential, also using historical data on the environmental, climatic and socioeconomic characteristics of the area. For this purpose, experiments of different types of Geomatics carried out individually on other application cases have been integrated into this work and are coordinated and integrated here in order to provide research/application cues for Agriculture 4.0.


Asunto(s)
Agricultura , Tecnología de Sensores Remotos , Tecnología de Sensores Remotos/métodos , Agricultura/métodos , Sistemas de Información Geográfica , Granjas , Plantas
6.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080972

RESUMEN

A novel and low-cost framework for food traceability, composed by commercial and proprietary sensing devices, for the remote monitoring of air, water, soil parameters and herbicide contamination during the farming process, has been developed and verified in real crop environments. It offers an integrated approach to food traceability with embedded systems supervision, approaching the problem to testify the quality of the food product. Moreover, it fills the gap of missing low-cost systems for monitoring cropping environments and pesticides contamination, satisfying the wide interest of regulatory agencies and final customers for a sustainable farming. The novelty of the proposed monitoring framework lies in the realization and the adoption of a fully automated prototype for in situ glyphosate detection. This device consists of a custom-made and automated fluidic system which, leveraging on the Molecularly Imprinted Polymer (MIP) sensing technology, permits to detect unwanted glyphosate contamination. The custom electronic mainboard, called ElectroSense, exhibits both the potentiostatic read-out of the sensor and the fluidic control to accomplish continuous unattended measurements. The complementary monitored parameters from commercial sensing devices are: temperature, relative humidity, atmospheric pressure, volumetric water content, electrical conductivity of the soil, pH of the irrigation water, total Volatile Organic Compounds (VOCs) and equivalent CO2. The framework has been validated during the olive farming activity in an Italian company, proving its efficacy for food traceability. Finally, the system has been adopted in a different crop field where pesticides treatments are practiced. This has been done in order to prove its capability to perform first level detection of pesticide treatments. Good correlation results between chemical sensors signals and pesticides treatments are highlighted.


Asunto(s)
Plaguicidas , Inocuidad de los Alimentos , Plaguicidas/análisis , Plaguicidas/toxicidad , Suelo/química , Tecnología , Agua
7.
Sensors (Basel) ; 21(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920353

RESUMEN

Agriculture 4.0 is transforming farming livelihoods thanks to the development and adoption of technologies such as artificial intelligence, the Internet of Things and robotics, traditionally used in other productive sectors. Soft robotics and soft grippers in particular are promising approaches to lead to new solutions in this field due to the need to meet hygiene and manipulation requirements in unstructured environments and in operation with delicate products. This review aims to provide an in-depth look at soft end-effectors for agricultural applications, with a special emphasis on robotic harvesting. To that end, the current state of automatic picking tasks for several crops is analysed, identifying which of them lack automatic solutions, and which methods are commonly used based on the botanical characteristics of the fruits. The latest advances in the design and implementation of soft grippers are also presented and discussed, studying the properties of their materials, their manufacturing processes, the gripping technologies and the proposed control methods. Finally, the challenges that have to be overcome to boost its definitive implementation in the real world are highlighted. Therefore, this review intends to serve as a guide for those researchers working in the field of soft robotics for Agriculture 4.0, and more specifically, in the design of soft grippers for fruit harvesting robots.

8.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669077

RESUMEN

Optical Camera Communication (OCC) systems have a potential application in microalgae production plants. In this work, a proof-of-concept prototype consisting of an artificial lighting photobioreactor is proposed. This reactor optimises the culture's photosynthetic efficiency while transmitting on-off keying signals to a rolling-shutter camera. Upon reception, both signal decoding and biomass concentration sensing are performed simultaneously using image processing techniques. Moreover, the communication channel's theoretical modelling, the data rate system's performance, and the plant distribution requirements and restrictions for a production-scale facility are detailed. A case study is conducted to classify three different node arrangements in a real facility, considering node visibility, channel capacity, and space exploitation. Finally, several experiments comprising radiance evaluation and Signal-to-Noise Ratio (SNR) computation are performed at different angles of view in both indoor and outdoor environments. It is observed that the Lambertian-like emission patterns are affected by increasing concentrations, reducing the effective emission angles. Furthermore, significant differences in the SNR, up to 20 dB, perceived along the illuminated surface (centre versus border), gradually reduce as light is affected by greater dispersion. The experimental analysis in terms of scattering and selective wavelength attenuation for green (Arthrospira platensis) and brown (Rhodosorus marinus) microalgae species determines that the selected strain must be considered in the development of this system.


Asunto(s)
Microalgas , Spirulina , Biomasa , Comunicación , Fotobiorreactores
9.
Sensors (Basel) ; 21(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833551

RESUMEN

The upcoming agricultural revolution, known as Agriculture 4.0, integrates cutting-edge Information and Communication Technologies in existing operations. Various cyber threats related to the aforementioned integration have attracted increasing interest from security researchers. Network traffic analysis and classification based on Machine Learning (ML) methodologies can play a vital role in tackling such threats. Towards this direction, this research work presents and evaluates different ML classifiers for network traffic classification, i.e., K-Nearest Neighbors (KNN), Support Vector Classification (SVC), Decision Tree (DT), Random Forest (RF) and Stochastic Gradient Descent (SGD), as well as a hard voting and a soft voting ensemble model of these classifiers. In the context of this research work, three variations of the NSL-KDD dataset were utilized, i.e., initial dataset, undersampled dataset and oversampled dataset. The performance of the individual ML algorithms was evaluated in all three dataset variations and was compared to the performance of the voting ensemble methods. In most cases, both the hard and the soft voting models were found to perform better in terms of accuracy compared to the individual models.


Asunto(s)
Algoritmos , Aprendizaje Automático , Agricultura , Análisis por Conglomerados , Política
10.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34883903

RESUMEN

The agriculture sector is one of the backbones of many countries' economies. Its processes have been changing to enable technology adoption to increase productivity, quality, and sustainable development. In this research, we present a scientific mapping of the adoption of precision techniques and breakthrough technologies in agriculture, so-called Digital Agriculture. To do this, we used 4694 documents from the Web of Science database to perform a Bibliometric Performance and Network Analysis of the literature using SciMAT software with the support of the PICOC protocol. Our findings presented 22 strategic themes related to Digital Agriculture, such as Internet of Things (IoT), Unmanned Aerial Vehicles (UAV) and Climate-smart Agriculture (CSA), among others. The thematic network structure of the nine most important clusters (motor themes) was presented and an in-depth discussion was performed. The thematic evolution map provides a broad perspective of how the field has evolved over time from 1994 to 2020. In addition, our results discuss the main challenges and opportunities for research and practice in the field of study. Our findings provide a comprehensive overview of the main themes related to Digital Agriculture. These results show the main subjects analyzed on this topic and provide a basis for insights for future research.


Asunto(s)
Internet de las Cosas , Dispositivos Aéreos No Tripulados , Agricultura , Bibliometría , Humanos , Programas Informáticos
11.
Sensors (Basel) ; 20(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327512

RESUMEN

Research has shown the multitude of applications that Internet of Things (IoT), cloud computing, and forecast technologies present in every sector. In agriculture, one application is the monitoring of factors that influence crop development to assist in making crop management decisions. Research on the application of such technologies in agriculture has been mainly conducted at small experimental sites or under controlled conditions. This research has provided relevant insights and guidelines for the use of different types of sensors, application of a multitude of algorithms to forecast relevant parameters as well as architectural approaches of IoT platforms. However, research on the implementation of IoT platforms at the commercial scale is needed to identify platform requirements to properly function under such conditions. This article evaluates an IoT platform (IRRISENS) based on fully replicable microservices used to sense soil, crop, and atmosphere parameters, interact with third-party cloud services for scheduling irrigation and, potentially, control irrigation automatically. The proposed IoT platform was evaluated during one growing season at four commercial-scale farms on two broadacre irrigated crops with very different water management requirements (rice and cotton). Five main requirements for IoT platforms to be used in agriculture at commercial scale were identified from implementing IRRISENS as an irrigation support tool for rice and cotton production: scalability, flexibility, heterogeneity, robustness to failure, and security. The platform addressed all these requirements. The results showed that the microservice-based approach used is robust against both intermittent and critical failures in the field that could occur in any of the monitored sites. Further, processing or storage overload caused by datalogger malfunctioning or other reasons at one farm did not affect the platform's performance. The platform was able to deal with different types of data heterogeneity. Since there are no shared microservices among farms, the IoT platform proposed here also provides data isolation, maintaining data confidentiality for each user, which is relevant in a commercial farm scenario.

12.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272757

RESUMEN

The agri-food sector is in constantly renewing, continuously demanding new systems that facilitate farmers´ work. Efficient agricultural practices are essential to increasing farm profitability, and reducing water consumption can be achieved by real-time monitoring of water needs. However, the prices of automatic systems for collecting data from several sources (soil and climate) are expensive and their autonomy is very low. This paper presents a low-consumption solution using the Internet of Things (IoT) based on wireless sensor networks (WSNs) and long-range wide-area network (LoRaWAN) technologies. By means of low-power wide-area network (LPWAN) communication, a farmer can monitor the state of crops in real time thanks to a large number of sensors connected wirelessly and distributed across the farm. The wireless sensor node developed, called BoXmote, exhibits very low power, since it has been optimized both in terms of hardware and software. The result is a higher degree of autonomy than commercial motes. This will allow the farmer to have access to all of the information necessary to achieve an efficient irrigation management of his crops with full autonomy.

13.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322252

RESUMEN

In recent years, the concept of Agriculture 4.0 has emerged as an evolution of precision agriculture (PA) through the diffusion of the Internet of things (IoT). There is a perception that the PA adoption is occurring at a slower pace than expected. Little research has been carried out about Agriculture 4.0, as well as to farmer behavior and operations management. This work explores what drives the adoption of PA in the Agriculture 4.0 context, focusing on farmer behavior and operations management. As a result of a multimethod approach, the factors explaining the PA adoption in the Agriculture 4.0 context and a model of irrigation operations management are proposed. Six simulation scenarios are performed to study the relationships among the factors involved in irrigation planning. Empirical findings contribute to a better understanding of what Agriculture 4.0 is and to expand the possibilities of IoT in the PA domain. This work also contributes to the discussion on Agriculture 4.0, thanks to multidisciplinary research bringing together the different perspectives of PA, IoT and operations management. Moreover, this research highlights the key role of IoT, considering the farmer's possible choice to adopt several IoT sensing technologies for data collection.


Asunto(s)
Agricultura/métodos , Redes de Comunicación de Computadores , Internet de las Cosas , Recolección de Datos , Tecnología Inalámbrica
14.
Heliyon ; 10(9): e30210, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694104

RESUMEN

Various Digital Agricultural Technologies (DAT) have been developed and implemented around the world. This study aims to estimate the overall adoption rate and identify the determinant factors for a better adoption perspective after decades of innovation and dissemination. A systematic review was conducted on published studies that reported adoption rates and determinant factors using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. We used meta-regression and the partial correlation coefficient to estimate the effect size and establish the correlation between socioeconomic characteristics and the adoption of various technologies reported. Fifty-two studies with 32400 participants met the selection criteria and were included in the study. The results revealed an overall pooled adoption rate of 39 %, with the highest adoption rates in developing countries in Africa and South America. Socioeconomic factors such as age, education, gender, and income were found to be the main determinants and should be considered when designing technology for sustainable adoption. The study also found that young farmers were more susceptible to adoption. Moreover, farmers with higher income levels and educational attainment are more likely to use technology linked to agricultural production, market access, and digital advising, implying that high-income farmers with more education are more tech-savvy. However, this does not exclude low-income and low-educated farmers from adopting the technologies, as many models and strategies with socioeconomic considerations were developed. It is one of the reasons behind the underlying enthusiasm for digital agricultural adoption in low and middle-income countries.

15.
Pest Manag Sci ; 80(10): 5277-5285, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38946320

RESUMEN

BACKGROUND: The Red Imported Fire Ant (RIFA), scientifically known as Solenopsis invicta, is a destructive invasive species causing considerable harm to ecosystems and generating substantial economic costs globally. Traditional methods for RIFA nests detection are labor-intensive and may not be scalable to larger field areas. This study aimed to develop an innovative surveillance system that leverages artificial intelligence (AI) and robotic dogs to automate the detection and geolocation of RIFA nests, thereby improving monitoring and control strategies. RESULTS: The designed surveillance system, through integrating the CyberDog robotic platform with a YOLOX AI model, demonstrated RIFA nest detection precision rates of >90%. The YOLOX model was trained on a dataset containing 1118 images and achieved a final precision rate of 0.95, with an inference time of 20.16 ms per image, indicating real-time operational suitability. Field tests revealed that the CyberDog system identified three times more nests than trained human inspectors, with significantly lower rates of missed detections and false positives. CONCLUSION: The findings underscore the potential of AI-driven robotic systems in advancing pest management. The CyberDog/YOLOX system not only matched human inspectors in speed, but also exceeded them in accuracy and efficiency. This study's results are significant as they highlight how technology can be harnessed to address biological invasions, offering a more effective, ecologically friendly, and scalable solution for RIFA detection. The successful implementation of this system could pave the way for broader applications in environmental monitoring and pest control, ultimately contributing to the preservation of biodiversity and economic stability. © 2024 Society of Chemical Industry.


Asunto(s)
Hormigas , Especies Introducidas , Robótica , Animales , Inteligencia Artificial , Comportamiento de Nidificación , Control de Insectos/métodos , Control de Insectos/instrumentación , Hormigas de Fuego
16.
J Agric Food Chem ; 72(19): 10737-10752, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709011

RESUMEN

Digital Twins have emerged as an outstanding opportunity for precision farming, digitally replicating in real-time the functionalities of objects and plants. A virtual replica of the crop, including key agronomic development aspects such as irrigation, optimal fertilization strategies, and pest management, can support decision-making and a step change in farm management, increasing overall sustainability and direct water, fertilizer, and pesticide savings. In this review, Digital Twin technology is critically reviewed and framed in the context of recent advances in precision agriculture and Agriculture 4.0. The review is organized for each step of agricultural lifecycle, edaphic, phytotechnologic, postharvest, and farm infrastructure, with supporting case studies demonstrating direct benefits for agriculture production and supply chain considering both benefits and limitations of such an approach. Challenges and limitations are disclosed regarding the complexity of managing such an amount of data and a multitude of (often) simultaneous operations and supports.


Asunto(s)
Agricultura , Productos Agrícolas , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/genética , Agricultura/métodos , Fertilizantes/análisis , Producción de Cultivos/métodos
17.
Agric Human Values ; 40(2): 423-439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36340284

RESUMEN

Prevalent narratives of agricultural innovation predict that we are once again on the cusp of a global agricultural revolution. According to these narratives, this so-called fourth agricultural revolution, or agriculture 4.0, is set to transform current agricultural practices around the world at a quick pace, making use of new sophisticated precision technologies. Often used as a rhetorical device, this narrative has a material effect on the trajectories of an inherently political and normative agricultural transition; with funding, other policy instruments, and research attention focusing on the design and development of new precision technologies. A growing critical social science literature interrogates the promises of revolution. Engagement with new technology is likely to be uneven, with benefits potentially favouring the already powerful and the costs falling hardest on the least powerful. If grand narratives of change remain unchallenged, we risk pursuing innovation trajectories that are exclusionary, failing to achieve responsible innovation. This study utilises a range of methodologies to explore everyday encounters between farmers and technology, with the aim of inspiring further work to compile the microhistories that can help to challenge robust grand narratives of change. We explore how farmers are engaging with technology in practice and show how these interactions problematise a simple, linear notion of innovation adoption and use. In doing so, we reflect upon the contribution that the study of everyday encounters can make in setting more inclusionary, responsible pathways towards sustainable agriculture.

18.
Front Robot AI ; 10: 1330496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304762

RESUMEN

Agriculture 4.0 presents several challenges for the automation of various operations, including the fundamental task of harvesting. One of the crucial aspects in the automatic harvesting of high value crops is the grip and detachment of delicate fruits without spoiling them or interfering with the environment. Soft robotic systems, particularly soft grippers, offer a promising solution for this problem, as they can operate in unstructured environments, manipulate objects delicately, and interact safely with humans. In this context, this article presents a soft gripper design for harvesting as well as for pick-and-place operations of small and medium-sized fruits. The gripper is fabricated using the 3D printing technology with a flexible thermoplastic elastomer filament. This approach enables the production of an economical, compact, easily replicable, and interchangeable gripper by utilizing soft robotics principles, such as flexible structures and pneumatic actuation.

19.
Bioresour Bioprocess ; 10(1): 90, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38647622

RESUMEN

Sustainable agricultural practices help to manage and use natural resources efficiently. Due to global climate and geospatial land design, soil texture, soil-water content (SWC), and other parameters vary greatly; thus, real time, robust, and accurate soil analytical measurements are difficult to be developed. Conventional statistical analysis tools take longer to analyze and interpret data, which may have delayed a crucial decision. Therefore, this review paper is presented to develop the researcher's insight toward robust, accurate, and quick soil analysis using artificial intelligence (AI), deep learning (DL), and machine learning (ML) platforms to attain robustness in SWC and soil texture analysis. Machine learning algorithms, such as random forests, support vector machines, and neural networks, can be employed to develop predictive models based on available soil data and auxiliary environmental variables. Geostatistical techniques, including kriging and co-kriging, help interpolate and extrapolate soil property values to unsampled locations, improving the spatial representation of the data set. The false positivity in SWC results and bugs in advanced detection techniques are also evaluated, which may lead to wrong agricultural practices. Moreover, the advantages of AI data processing over general statistical analysis for robust and noise-free results have also been discussed in light of smart irrigation technologies. Conclusively, the conventional statistical tools for SWCs and soil texture analysis are not enough to practice and manage ergonomic land management. The broader geospatial non-numeric data are more suitable for AI processing that may soon help soil scientists develop a global SWC database.

20.
Front Artif Intell ; 6: 1200977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483870

RESUMEN

Introduction: Machine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a result of different growing conditions. Synthetically-augmented datasets have shown promise in improving existing models when real data is not available. Methods: In this paper, we employ a contrastive unpaired translation (CUT) generative adversarial network (GAN) and simple image processing techniques to translate indoor plant images to appear as field images. While we train our network to translate an image containing only a single plant, we show that our method is easily extendable to produce multiple-plant field images. Results: Furthermore, we use our synthetic multi-plant images to train several YoloV5 nano object detection models to perform the task of plant detection and measure the accuracy of the model on real field data images. Discussion: The inclusion of training data generated by the CUT-GAN leads to better plant detection performance compared to a network trained solely on real data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA