Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.006
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 40: 615-649, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35134315

RESUMEN

Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Interferón Tipo I , Infecciones por Alphavirus/patología , Animales , Humanos , Inmunidad , Tropismo
2.
Proc Natl Acad Sci U S A ; 121(36): e2318704121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190356

RESUMEN

The incidence of dengue virus disease has increased globally across the past half-century, with highest number of cases ever reported in 2019 and again in 2023. We analyzed climatological, epidemiological, and phylogenomic data to investigate drivers of two decades of dengue in Cambodia, an understudied endemic setting. Using epidemiological models fit to a 19-y dataset, we first demonstrate that climate-driven transmission alone is insufficient to explain three epidemics across the time series. We then use wavelet decomposition to highlight enhanced annual and multiannual synchronicity in dengue cycles between provinces in epidemic years, suggesting a role for climate in homogenizing dynamics across space and time. Assuming reported cases correspond to symptomatic secondary infections, we next use an age-structured catalytic model to estimate a declining force of infection for dengue through time, which elevates the mean age of reported cases in Cambodia. Reported cases in >70-y-old individuals in the 2019 epidemic are best explained when also allowing for waning multitypic immunity and repeat symptomatic infections in older patients. We support this work with phylogenetic analysis of 192 dengue virus (DENV) genomes that we sequenced between 2019 and 2022, which document emergence of DENV-2 Cosmopolitan Genotype-II into Cambodia. This lineage demonstrates phylogenetic homogeneity across wide geographic areas, consistent with invasion behavior and in contrast to high phylogenetic diversity exhibited by endemic DENV-1. Finally, we simulate an age-structured, mechanistic model of dengue dynamics to demonstrate how expansion of an antigenically distinct lineage that evades preexisting multitypic immunity effectively reproduces the older-age infections witnessed in our data.


Asunto(s)
Virus del Dengue , Dengue , Filogenia , Cambodia/epidemiología , Dengue/epidemiología , Dengue/virología , Dengue/inmunología , Dengue/transmisión , Humanos , Virus del Dengue/genética , Virus del Dengue/inmunología , Clima , Incidencia , Demografía
3.
Proc Natl Acad Sci U S A ; 120(37): e2303080120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669371

RESUMEN

Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.


Asunto(s)
Aedes , Infecciones por Alphavirus , Virus Chikungunya , Sobreinfección , Fiebre Amarilla , Animales , Virus Sindbis
4.
EMBO J ; 40(22): e108966, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34618370

RESUMEN

Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral dissemination. MARCO-mediated accumulation of alphavirus particles in the draining lymph node and liver is an important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- mice and disease is more severe. In contrast to prior studies implicating a key role for lymph node macrophages in limiting viral dissemination, these findings exemplify a previously unrecognized arbovirus-scavenging role for lymphatic endothelial cells and improve our mechanistic understanding of viremia control during arthritogenic alphavirus infection.


Asunto(s)
Infecciones por Alphavirus/virología , Ganglios Linfáticos/citología , Receptores Inmunológicos/metabolismo , Viremia/patología , Alphavirus/patogenicidad , Animales , Fiebre Chikungunya/genética , Fiebre Chikungunya/virología , Células Endoteliales/virología , Interacciones Huésped-Patógeno , Macrófagos del Hígado/virología , Ganglios Linfáticos/virología , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , ARN Viral/metabolismo , Receptores Inmunológicos/genética , Análisis de la Célula Individual , Viremia/virología
5.
J Virol ; : e0054024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162433

RESUMEN

Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE: Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.

6.
Proc Natl Acad Sci U S A ; 119(24): e2114309119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35675424

RESUMEN

Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes, which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes-mosquito-borne viruses.


Asunto(s)
Aedes , Infecciones por Arbovirus , Arbovirus , Saliva , Taquicininas , Virosis , Aedes/genética , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/genética , Arbovirus/metabolismo , Saliva/virología , Taquicininas/genética , Taquicininas/metabolismo , Virosis/transmisión
7.
Proc Natl Acad Sci U S A ; 119(26): e2118283119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737833

RESUMEN

Over half the world's population is at risk for viruses transmitted by Aedes mosquitoes, such as dengue and Zika. The primary vector, Aedes aegypti, thrives in urban environments. Despite decades of effort, cases and geographic range of Aedes-borne viruses (ABVs) continue to expand. Rigorously proven vector control interventions that measure protective efficacy against ABV diseases are limited to Wolbachia in a single trial in Indonesia and do not include any chemical intervention. Spatial repellents, a new option for efficient deployment, are designed to decrease human exposure to ABVs by releasing active ingredients into the air that disrupt mosquito-human contact. A parallel, cluster-randomized controlled trial was conducted in Iquitos, Peru, to quantify the impact of a transfluthrin-based spatial repellent on human ABV infection. From 2,907 households across 26 clusters (13 per arm), 1,578 participants were assessed for seroconversion (primary endpoint) by survival analysis. Incidence of acute disease was calculated among 16,683 participants (secondary endpoint). Adult mosquito collections were conducted to compare Ae. aegypti abundance, blood-fed rate, and parity status through mixed-effect difference-in-difference analyses. The spatial repellent significantly reduced ABV infection by 34.1% (one-sided 95% CI lower limit, 6.9%; one-sided P value = 0.0236, z = 1.98). Aedes aegypti abundance and blood-fed rates were significantly reduced by 28.6 (95% CI 24.1%, ∞); z = -9.11) and 12.4% (95% CI 4.2%, ∞); z = -2.43), respectively. Our trial provides conclusive statistical evidence from an appropriately powered, preplanned cluster-randomized controlled clinical trial of the impact of a chemical intervention, in this case a spatial repellent, to reduce the risk of ABV transmission compared to a placebo.


Asunto(s)
Aedes , Repelentes de Insectos , Control de Mosquitos , Mosquitos Vectores , Enfermedades Transmitidas por Vectores , Adulto , Animales , Dengue/epidemiología , Dengue/prevención & control , Humanos , Control de Mosquitos/normas , Perú/epidemiología , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Virus Zika , Infección por el Virus Zika
8.
Annu Rev Entomol ; 69: 159-182, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37625116

RESUMEN

Dengue, caused by the dengue virus, is the most widespread arboviral infectious disease of public health significance globally. This review explores the communicative function of olfactory cues that mediate host-seeking, egg-laying, plant-feeding, and mating behaviors in Aedes aegypti and Aedes albopictus, two mosquito vectors that drive dengue virus transmission. Aedes aegypti has adapted to live in close association with humans, preferentially feeding on them and laying eggs in human-fabricated water containers and natural habitats. In contrast, Ae. albopictus is considered opportunistic in its feeding habits and tends to inhabit more vegetative areas. Additionally, the ability of both mosquito species to locate suitable host plants for sugars and find mates for reproduction contributes to their survival. Advances in chemical ecology, functional genomics, and behavioral analyses have improved our understanding of the underlying neural mechanisms and reveal novel and specific olfactory semiochemicals that these species use to locate and discriminate among resources in their environment. Physiological status; learning; and host- and habitat-associated factors, including microbial infection and abundance, shape olfactory responses of these vectors. Some of these semiochemicals can be integrated into the toolbox for dengue surveillance and control.


Asunto(s)
Aedes , Dengue , Humanos , Animales , Ecología , Feromonas
9.
Clin Infect Dis ; 78(1): 80-89, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-37540989

RESUMEN

BACKGROUND: Powassan virus (POWV) is an emerging arthropod-borne flavivirus, transmitted by Ixodes spp. ticks, which has been associated with neuroinvasive disease and poor outcomes. METHODS: A retrospective study was conducted at Mayo Clinic from 2013 to 2022. We included clinical and epidemiologic data of probable and confirmed neuroinvasive POWV cases. RESULTS: Sixteen patients with neuroinvasive POWV were identified; their median age was 63.2 years, and 62.5% were male. Six patients presented with rhombencephalitis, 4 with isolated meningitis, 3 with meningoencephalitis, 2 with meningoencephalomyelitis, and 1 with opsoclonus myoclonus syndrome. A median time of 18 days was observed between symptom onset and diagnosis. Cerebrospinal fluid analysis showed lymphocytic pleocytosis with elevated protein and normal glucose in the majority of patients. Death occurred within 90 days in 3 patients (18.8%), and residual neurologic deficits were seen in 8 survivors (72.7%). CONCLUSIONS: To our knowledge, this is the largest case series of patients with neuroinvasive POWV infection. We highlight the importance of a high clinical suspicion among patients who live in or travel to high-risk areas during the spring to fall months. Our data show high morbidity and mortality rates among patients with neuroinvasive disease.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Meningoencefalitis , Animales , Humanos , Masculino , Persona de Mediana Edad , Femenino , Estudios Retrospectivos , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/epidemiología
10.
Clin Infect Dis ; 78(3): 788-796, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-37823481

RESUMEN

BACKGROUND: Dengue cases continue to rise and can overwhelm healthcare systems during outbreaks. In dengue, neutrophil mediators, soluble urokinase plasminogen activator receptor (suPAR) and olfactomedin 4, and mast cell mediators, chymase and tryptase, have not been measured longitudinally across the dengue phases. The utility of these proteins as prognostic biomarkers for severe dengue has also not been assessed in an older adult population. METHODS: We prospectively enrolled 99 adults with dengue-40 dengue fever, 46 dengue with warning signs and 13 severe dengue, along with 30 controls. Plasma levels of suPAR, olfactomedin 4, chymase and tryptase were measured at the febrile, critical and recovery phases in dengue patients. RESULTS: The suPAR levels were significantly elevated in severe dengue compared to the other dengue severities and controls in the febrile (P < .001), critical (P < .001), and recovery (P = .005) phases. In the febrile phase, suPAR was a prognostic biomarker of severe dengue, with an AUROC of 0.82. Using a cutoff derived from Youden's index (5.4 ng/mL) and an estimated prevalence of severe dengue (16.5%) in our healthcare institution, the sensitivity was 71.4% with a specificity of 87.9% in the febrile phase, and the positive and negative predictive values were 54.7% and 95.8%, respectively. Olfactomedin 4 was elevated in dengue patients but not in proportion to disease severity in the febrile phase (P = .04) There were no significant differences in chymase and tryptase levels between dengue patients and controls. CONCLUSIONS: In adult dengue, suPAR may be a reliable prognostic biomarker for severe dengue in the febrile phase.


Asunto(s)
Proteínas de la Matriz Extracelular , Glicoproteínas , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Dengue Grave , Humanos , Anciano , Biomarcadores , Pronóstico , Quimasas , Triptasas , Dengue Grave/diagnóstico
11.
Emerg Infect Dis ; 30(5): 984-990, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666621

RESUMEN

We conducted a cross-sectional study in wild boar and extensively managed Iberian pig populations in a hotspot area of Crimean-Congo hemorrhagic fever virus (CCHFV) in Spain. We tested for antibodies against CCHFV by using 2 ELISAs in parallel. We assessed the presence of CCHFV RNA by means of reverse transcription quantitative PCR protocol, which detects all genotypes. A total of 113 (21.8%) of 518 suids sampled showed antibodies against CCHFV by ELISA. By species, 106 (39.7%) of 267 wild boars and 7 (2.8%) of 251 Iberian pigs analyzed were seropositive. Of the 231 Iberian pigs and 231 wild boars analyzed, none tested positive for CCHFV RNA. These findings indicate high CCHFV exposure in wild boar populations in endemic areas and confirm the susceptibility of extensively reared pigs to CCHFV, even though they may only play a limited role in the enzootic cycle.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Enfermedades de los Porcinos , Animales , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , España/epidemiología , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Fiebre Hemorrágica de Crimea/virología , Porcinos , Estudios Transversales , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Anticuerpos Antivirales/sangre , Estudios Seroepidemiológicos , Sus scrofa/virología , ARN Viral
13.
Emerg Infect Dis ; 30(9): 1834-1840, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173662

RESUMEN

Western equine encephalitis virus (WEEV) is a mosquitoborne virus that reemerged in December 2023 in Argentina and Uruguay, causing a major outbreak. We investigated the outbreak using epidemiologic, entomological, and genomic analyses, focusing on WEEV circulation near the Argentina‒Uruguay border in Rio Grande do Sul state, Brazil. During November 2023‒April 2024, the outbreak in Argentina and Uruguay resulted in 217 human cases, 12 of which were fatal, and 2,548 equine cases. We determined cases on the basis of laboratory and clinical epidemiologic criteria. We characterized 3 fatal equine cases caused by a novel WEEV lineage identified through a nearly complete coding sequence analysis, which we propose as lineage C. Our findings highlight the importance of continued surveillance and equine vaccination to control future WEEV outbreaks in South America.


Asunto(s)
Brotes de Enfermedades , Virus de la Encefalitis Equina del Oeste , Epidemiología Molecular , Filogenia , Animales , Virus de la Encefalitis Equina del Oeste/genética , Humanos , Caballos , Uruguay/epidemiología , América del Sur/epidemiología , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Masculino , Encefalomielitis Equina del Oeste/epidemiología , Encefalomielitis Equina del Oeste/virología , Femenino , Argentina/epidemiología , Encefalomielitis Equina/epidemiología , Encefalomielitis Equina/virología , Encefalomielitis Equina/veterinaria , Adulto
14.
Curr Issues Mol Biol ; 46(3): 2093-2104, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38534750

RESUMEN

The major arboviruses mainly belong to the Bunyaviridae, Togaviridae, and Flaviviridae families, among which the chikungunya virus and dengue virus have emerged as global public health problems. The main objective of this study was to develop specific, sensitive, and cost-effective molecular multiplex RT-PCR and RT-qPCR assays for the rapid and simultaneous detection of CHIKV and the four serotypes of DENV for arbovirus surveillance. Specific primers for all viruses were designed, and one-step multiplex RT-PCR (mRT-PCR) and RT-qPCR (mRT-qPCR) were developed using reference strains of the CHIKV and DENV serotypes. The specificity of the test for all the viruses was confirmed through sequencing. The standard curves showed a high correlation coefficient, R2 = 0.99, for DENV-2 and DENV-3; R2 = 0.98, for DENV-4; and CHIKV; R2 = 0.93, for DENV-1. The limits of detection were calculated to be 4.1 × 10-1 copies/reaction for DENV-1, DENV-3, and CHIKV and 4.1 × 101 for DENV-2 and DENV-4. The specificity and sensitivity of the newly developed mRT-PCR and mRT-qPCR were validated using positive serum samples collected from India and Burkina Faso. The sensitivity of mRT-PCR and mRT-qPCR are 91%, and 100%, respectively. The specificity of both assays was 100%. mRT-PCR and mRT-qPCR assays are low-cost, and a combination of both will be a useful tool for arbovirus surveillance.

15.
J Gen Virol ; 105(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38921821

RESUMEN

Schmallenberg virus (SBV) belongs to the Simbu serogroup within the family Peribunyaviridae, genus Orthobunyavirus and is transmitted by Culicoides biting midges. Infection of naïve ruminants in a critical phase of gestation may lead to severe congenital malformations. Sequence analysis from viremic animals revealed a very high genome stability. In contrast, sequence variations are frequently described for SBV from malformed fetuses. In addition to S segment mutations, especially within the M segment encoding the major immunogen Gc, point mutations or genomic deletions are also observed. Analysis of the SBV_D281/12 isolate from a malformed fetus revealed multiple point mutations in all three genome segments. It also has a large genomic deletion in the antigenic domain encoded by the M segment compared to the original SBV reference strain 'BH80/11' isolated from viremic blood in 2011. Interestingly, SBV_D281/12 showed a marked replication deficiency in vitro in Culicoides sonorensis cells (KC cells), but not in standard baby hamster kidney cells (BHK-21). We therefore generated a set of chimeric viruses of rSBV_D281/12 and wild-type rSBV_BH80/11 by reverse genetics, which were characterized in both KC and BHK-21 cells. It could be shown that the S segment of SBV_D281/12 is responsible for the replication deficit and that it acts independently from the large deletion within Gc. In addition, a single point mutation at position 111 (S to N) of the nucleoprotein was identified as the critical mutation. Our results suggest that virus variants found in malformed fetuses and carrying characteristic genomic mutations may have a clear 'loss of fitness' for their insect hosts in vitro. It can also be concluded that such mutations lead to virus variants that are no longer part of the natural transmission cycle between mammalian and insect hosts. Interestingly, analysis of a series of SBV sequences confirmed the S111N mutation exclusively in samples of malformed fetuses and not in blood from viremic animals. The characterization of these changes will allow the definition of protein functions that are critical for only one group of hosts.


Asunto(s)
Infecciones por Bunyaviridae , Ceratopogonidae , Genoma Viral , Orthobunyavirus , Animales , Orthobunyavirus/genética , Orthobunyavirus/clasificación , Orthobunyavirus/aislamiento & purificación , Infecciones por Bunyaviridae/virología , Infecciones por Bunyaviridae/veterinaria , Ceratopogonidae/virología , Cricetinae , Línea Celular , Replicación Viral , Mutación Puntual , Bovinos , Ovinos , Filogenia , ARN Viral/genética
16.
Biol Proced Online ; 26(1): 17, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890570

RESUMEN

BACKGROUND: Culex pipiens L. is a principal vector of zoonotic arboviruses in Europe, acting in both an amplification role in enzootic transmission between avian hosts and as a bridge vector between avian hosts and mammals. The species consists of two forms which are indistinguishable using morphological methods but possess varying ecological and physiological traits that influence their vector capacity. In this study we validate methods that can be used to extract trace DNA from single pupal exuviae of Cx. pipiens for use in molecular speciation of samples. These DNA extraction methods are compared using measurement of the total yield and successful identification using a real-time polymerase chain reaction (PCR) assay. RESULTS: Genomic DNA was initially extracted from colony-derived individuals using an ethanol precipitation method, two commercially available DNA extraction kits: DNeasy® Blood & Tissue Kit (Qiagen, UK) and Wizard® SV Genomic DNA Purification System (Promega, UK) and a direct real-time PCR method. Time elapsed between eclosion and processing of pupae significantly influenced Cx. pipiens form identification as nucleic acid concentration and PCR amplification success decreased with increased time elapsed. Real-time PCR amplification success, however, was not shown to vary significantly between the three extraction methods, with all methods successfully identifying all samples, but the direct real-time PCR method achieved a lesser amplification success rate of 70% (n = 20 for each treatment). More variable results were produced when field-derived exuviae were used, with no significant difference in real-time PCR amplification success found across the four methods and a lower overall rate of successful identification of 55-80%. CONCLUSIONS: This study shows that both colony and field derived Cx. pipiens pupal exuviae can be a useful non-invasive source of trace DNA permitting accurate biotype differentiation for at least twenty-four hours post-eclosion. The significance and utility of this technique in ecological and behavioural studies of Cx. pipiens is discussed and recommendations made for use according to experimental scenario.

17.
J Virol ; 97(10): e0116223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800949

RESUMEN

IMPORTANCE: Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.


Asunto(s)
Culicidae , Aptitud Genética , Mosquitos Vectores , Virulencia , Virus Zika , Animales , Ratones , Culicidae/virología , Mosquitos Vectores/virología , Virulencia/genética , Virus Zika/química , Virus Zika/genética , Virus Zika/patogenicidad , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Pase Seriado , Sustitución de Aminoácidos , Aptitud Genética/genética
18.
J Virol ; 97(1): e0133122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475765

RESUMEN

Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.


Asunto(s)
Infecciones por Bunyaviridae , Complejos de Clasificación Endosomal Requeridos para el Transporte , Glicoproteínas de Membrana , Orthobunyavirus , Proteínas Virales , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Orthobunyavirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
J Med Virol ; 96(4): e29581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572939

RESUMEN

The World Health Organization classified Crimean-Congo hemorrhagic fever (CCHF) as a high-priority infectious disease and emphasized the performance of research studies and product development against it. Little information is available about the immune response due to natural CCHF virus (CCHFV) infection in humans. Here, we investigated the persistence of IgG and neutralizing antibodies in serum samples collected from 61 Iranian CCHF survivors with various time points after recovery (<12, 12-60, and >60 months after disease). The ELISA results showed IgG seropositivity in all samples while a pseudotyped based neutralization assay findings revealed the presence of neutralizing antibody in 29 samples (46.77%). For both IgG and neutralizing antibodies, a decreasing trend of titer was observed with the increase in the time after recovery. Not only the mean titer of IgG (772.80 U/mL) was higher than mean neutralizing antibody (25.64) but also the IgG persistence was longer. In conclusion, our findings provide valuable information about the long-term persistence of humoral immune response in CCHF survivors indicating that IgG antibody can be detected at least 8 years after recovery and low titers of neutralizing antibody can be detected in CCHF survivors.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Anticuerpos Neutralizantes , Irán , Inmunoglobulina G , Anticuerpos Antivirales
20.
J Med Virol ; 96(2): e29476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38373210

RESUMEN

Arthropod-borne viruses (arboviruses) count among emerging infections, which represent a major challenge for transfusion safety worldwide. To assess the risk of arboviruses-transmission by transfusion (ATT), we performed a survey to evaluate the potential threat for transfusion safety. Samples were retrospectively and randomly collected from donors who donated during the peak of dengue incidence in Cordoba (years: 2016 and 2019-2022). A cost-efficient strategy for molecular screening was implemented with a nucleic acid test (NAT) configured with Flavivirus and Alphavirus-universal degenerated primers targeting conserved gene regions. Besides, we evaluated the neutralizing antibody (NAb) prevalence by plaque reduction neutralization test (PRNT). A total of 1438 samples were collected. Among the NAT-screened samples, one resulted positive for Flavivirus detection. Subsequent sequencing of the PCR product revealed Saint Louis Encephalitis Virus (SLEV) infection (GeneBank accession number OR236721). NAb prevalence was 2.95% for anti-Dengue, 9.94% anti-SLEV, 1.09% anti-West Nile Virus, and 0% anti-Chikungunya. One of the NAb-positive samples also resulted positive for IgM against SLEV but negative by ARN detection. This is the first haemovigilance study developed in Argentina that evaluates the potential risk of ATT and the first research to determine the prevalence of NAb against Flavivirus through PNRT to avoid possible cross-reactions between Ab against Flavivirus. Herein, the finding of one SLEV-viremic donor and the detection of anti-SLEV IgM in a different donor demonstrated a potential threat for transfusion safety and emphasized the need for increased vigilance and proactive measures to ensure the safety of blood supplies.


Asunto(s)
Arbovirus , Encefalitis de San Luis , Flavivirus , Humanos , Arbovirus/genética , Donantes de Sangre , Argentina/epidemiología , Estudios Retrospectivos , Flavivirus/genética , Virus de la Encefalitis de San Luis/genética , Anticuerpos Neutralizantes , Inmunoglobulina M
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA