Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328915

RESUMEN

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Productos del Gen gag/genética , Cuerpos Multivesiculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Terminales Presinápticos/metabolismo , ARN Mensajero/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Productos del Gen gag/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Plasticidad Neuronal , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Terminales Presinápticos/fisiología , Unión Proteica , Dominios Proteicos , Retroelementos/genética
2.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804501

RESUMEN

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Asunto(s)
Hipocampo , Ácido Kaínico , Ratones Transgénicos , Plasticidad Neuronal , Animales , Ratones , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Convulsiones/fisiopatología , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Epilepsia/fisiopatología , Epilepsia/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Agonistas de Aminoácidos Excitadores/farmacología
3.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255853

RESUMEN

Activity-regulated cytoskeleton-associated protein (Arc) plays essential roles in diverse forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. In addition, it assembles into virus-like particles that may deliver mRNAs and/or other cargo between neurons and neighboring cells. Considering this broad range of activities, it is not surprising that Arc is subject to regulation by multiple types of post-translational modification, including phosphorylation, palmitoylation, SUMOylation, ubiquitylation, and acetylation. Here we explore the potential regulatory role of Arc phosphorylation by protein kinase C (PKC), which occurs on serines 84 and 90 within an α-helical segment in the N-terminal domain. To mimic the effect of PKC phosphorylation, we mutated the two serines to negatively charged glutamic acid. A consequence of introducing these phosphomimetic mutations is the almost complete inhibition of Arc palmitoylation, which occurs on nearby cysteines and contributes to synaptic weakening. The mutations also inhibit the binding of nucleic acids and destabilize high-order Arc oligomers. Thus, PKC phosphorylation of Arc may limit the full expression of LTD and may suppress the interneuronal transport of mRNAs.


Asunto(s)
Lipoilación , Ácidos Nucleicos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteína Quinasa C/genética
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928159

RESUMEN

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling. Although its mechanisms of action in these forms of synaptic plasticity are not completely well established, the activities of Arc include the remodeling of the actin cytoskeleton, the facilitation of AMPA receptor (AMPAR) endocytosis, and the regulation of the transcription of AMPAR subunits. In addition, Arc has sequence and structural similarity to retroviral Gag proteins and self-associates into virus-like particles that encapsulate mRNA and perhaps other cargo for intercellular transport. Each of these activities is likely to be influenced by Arc's reversible self-association into multiple oligomeric species. Here, we used mass photometry to show that Arc exists predominantly as monomers, dimers, and trimers at approximately 20 nM concentration in vitro. Fluorescence fluctuation spectroscopy revealed that Arc is almost exclusively present as low-order (monomer to tetramer) oligomers in the cytoplasm of living cells, over a 200 nM to 5 µM concentration range. We also confirmed that an α-helical segment in the N-terminal domain contains essential determinants of Arc's self-association.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas del Tejido Nervioso , Multimerización de Proteína , Humanos , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Animales
5.
Addict Biol ; 28(10): e13335, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37753560

RESUMEN

Use of addictive substances like cocaine produces enduring associations between the drug experience and cues in the drug-taking environment. In individuals with a substance use disorder (SUD) and attempting to remain abstinent, these powerful drug-cue associations can trigger a return to active drug use, but the molecular mechanisms regulating drug-cue associations remain poorly understood. The activity-regulated cytoskeleton-associated protein (Arc) is induced by cocaine in the nucleus accumbens (NAc), an important brain reward region, but Arc's NAc function in SUD-related behaviour remains unclear. We show here that cocaine self-administration (SA) in rats produced a significant upregulation of Arc protein in both the core and shell subregions of the NAc. Subregion-specific Arc reduction (shRNA) in the medial NAc Shell enhanced both context-associated and cue-reinstated cocaine seeking, but without altering the motivation to work for cocaine, the sensitivity to the reinforcing effects of cocaine or the ability of cocaine priming to reinstate drug seeking. In contrast, we observed no effects of Arc knockdown in the NAc core on any aspect of cocaine SA, extinction or reinstated cocaine seeking, suggesting that Arc functions within the medial NAc shell, but not NAc core, to limit the strength of drug-context and drug-cue associations that promote cocaine-seeking behaviour.

6.
BMC Ophthalmol ; 23(1): 3, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597053

RESUMEN

PURPOSE: The present study compared the expression of activity-regulated cytoskeleton-associated protein (ARC/Arg3.1) in the lateral geniculate body between form deprivation amblyopia kittens and normal kittens to examine the significance of ARC/Arg3.1 in the lateral geniculate body in the pathogenesis of amblyopia. METHODS: Twenty kittens were randomly divided into an experimental group (n = 10) and a control group (n = 10). Black opaque covering cloth was used to cover the right eye of kittens in the experimental group. Pattern visual evoked potentials (PVEP) were detected weekly in all kittens. The expression of the ARC/Arg3.1 gene was detected by immunohistochemistry and in situ hybridization, and apoptosis of lateral geniculate body cells was detected by TUNEL. RESULTS: PVEP detection showed that at the age of 5 and 7 weeks, the latency of P100 in the right eye of the experimental group was higher than that of the other three groups (P < 0.05), and the amplitude of P100 was lower than that of the other three groups (P < 0.05). The expression of ARC/Arg3.1 protein (P < 0.05) and mRNA (P < 0.05) in the lateral geniculate body of the experimental group was significantly lower than that of the control group. The level of neuronal apoptosis in the experimental group was higher than that in the control group (P < 0.05). The expression of the ARC/Arg3.1 gene was negatively correlated with the apoptosis level of lateral geniculate body neurons. CONCLUSIONS: The expression of ARC/Arg3.1 is associated with monocular form deprivation amblyopia and apoptosis of lateral geniculate body cells.


Asunto(s)
Ambliopía , Animales , Gatos , Ambliopía/genética , Potenciales Evocados Visuales , Ojo , Cuerpos Geniculados/metabolismo , Cuerpos Geniculados/patología , Inmunohistoquímica
7.
J Neurochem ; 161(6): 463-477, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35536742

RESUMEN

In the central nervous system, most neurons co-express TrkB and TrkC, the tyrosine kinase receptors for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). As NT3 can also activate TrkB, it has been difficult to understand how NT3 and TrkC can exert unique roles in the assembly of neuronal circuits. Using neurons differentiated from human embryonic stem cells expressing both TrkB and TrkC, we compared Trk activation by BDNF and NT3. To avoid the complications resulting from TrkB activation by NT3, we also generated neurons from stem cells engineered to lack TrkB. We found that NT3 activates TrkC at concentrations lower than those of BDNF needed to activate TrkB. Downstream of Trk activation, the changes in gene expression caused by TrkC activation were found to be similar to those resulting from TrkB activation by BDNF, including a number of genes involved in synaptic plasticity. At high NT3 concentrations, receptor selectivity was lost as a result of TrkB activation. In addition, TrkC was down-regulated, as was also the case with TrkB at high BDNF concentrations. By contrast, receptor selectivity as well as reactivation were preserved when neurons were exposed to low neurotrophin concentrations. These results indicate that the selectivity of NT3/TrkC signalling can be explained by the ability of NT3 to activate TrkC at concentrations lower than those needed to activate TrkB. They also suggest that in a therapeutic perspective, the dosage of Trk receptor agonists will need to be taken into account if prolonged receptor activation is to be achieved.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo , Humanos , Neuronas/metabolismo , Neurotrofina 3/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor trkB/genética , Receptor trkC/genética , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
8.
FASEB J ; 34(11): 15080-15092, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918771

RESUMEN

Subarachnoid hemorrhage (SAH), mostly caused by aneurysm rupture, is a pathological condition associated with oxidative stress and neuroinflammation. Toll-like receptors (TLRs) are a family of key regulators of neuroinflammation, and RNF216 is an E3 ubiquitin-protein ligase that regulates TLRs via ubiquitination and proteolytic degradation. However, the role of RNF216 in SAH has not been determined. In this study, we investigated the biological function of RNF216 in experimental SAH models both in vitro and in vivo. The expression of RNF216 was found to be upregulated in cortical neurons after oxyhemoglobin (OxyHb) treatment, and increased RNF216 expression was also observed in brain tissues in the single-hemorrhage model of SAH. Downregulation of RNF216 expression by short interfering RNA (siRNA) transfection significantly reduced cytotoxicity and apoptosis after OxyHb exposure. The results of western blot showed that the RNF216-mediated neuronal injury in vitro was associated with the regulation of the Arc-AMPAR pathway, which was related to intracellular Ca2+ dysfunction, as evidenced by Ca2+ imaging. In addition, knockdown of RNF216 in vivo using intraventricular injection of siRNA was found to attenuate brain injury and neuroinflammation via the Arc-AMPAR pathway after SAH in the animal model. In summary, we demonstrated that silence of RNF216 expression protects against neuronal injury and neurological dysfunction in experimental SAH models. These data support for the first time that RNF216 may represent a novel candidate for therapies against SAH.


Asunto(s)
Lesiones Encefálicas/patología , Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas/metabolismo , Receptores de Glutamato/metabolismo , Hemorragia Subaracnoidea/complicaciones , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Oxidorreductasas/genética , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Proc Natl Acad Sci U S A ; 115(49): 12531-12536, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30442670

RESUMEN

During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Aprendizaje Espacial/fisiología , Animales , Conducta Animal , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas del Citoesqueleto/genética , Eliminación de Gen , Regulación de la Expresión Génica/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal , Neuronas/fisiología
10.
J Neurosci ; 39(41): 8149-8163, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31488612

RESUMEN

Arc/Arg3.1, an activity regulated immediate early gene, is essential for learning and memory, synaptic plasticity, and maturation of neural networks. It has also been implicated in several neurodevelopmental disorders, including schizophrenia. Here, we used male and female constitutive and conditional Arc/Arg3.1 knock-out (KO) mice to investigate the causal relationship between Arc/Arg3.1 deletion and schizophrenia-linked neurophysiological and behavioral phenotypes. Using in vivo local field potential recordings, we observed dampened oscillatory activity in the prefrontal cortex (PFC) of the KO and early conditional KO (early-cKO) mice, in which Arc/Arg3.1 was deleted perinatally. Whole-cell patch-clamp recordings from neurons in PFC slices revealed altered synaptic properties and reduced network gain in the KO mice as possible mechanisms underlying the oscillation deficits. In contrast, we measured normal oscillatory activity in the PFC of late conditional KO (late-cKO) mice, in which Arc/Arg3.1 was deleted during late postnatal development. Our data show that constitutive Arc/Arg3.1 KO mice exhibit no deficit in social engagement, working memory, sensorimotor gating, native locomotor activity, and dopaminergic innervation. Moreover, adolescent social isolation, an environmental stressor, failed to induce deficits in sociability or sensorimotor gating in adult KO mice. Thus, genetic removal of Arc/Arg3.1 per se does not cause schizophrenia-like behavior. Prenatal or perinatal deletion of Arc/Arg3.1 alters cortical network activity, however, without overtly disrupting the balance of excitation and inhibition in the brain and not promoting schizophrenia. Misregulation of Arc/Arg3.1 rather than deletion could potentially tip this balance and thereby promote emergence of schizophrenia and other neuropsychiatric disorders.SIGNIFICANCE STATEMENT The activity-regulated and memory-linked gene Arc/Arg3.1 has been implicated in the pathogenesis of schizophrenia, but direct evidence and a mechanistic link are still missing. The current study asks whether loss of Arc/Arg3.1 can affect brain circuitry and cause schizophrenia-like symptoms in mice. The findings demonstrate that genetic deletion of Arc/Arg3.1 before puberty alters synaptic function and prefrontal cortex activity. Although brain networks are disturbed, genetic deletion of Arc/Arg3.1 does not cause schizophrenia-like behavior, even when combined with an environmental insult. It remains to be seen whether misregulation of Arc/Arg3.1 might critically imbalance brain networks and lead to emergence of schizophrenia.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/fisiopatología , Psicología del Esquizofrénico , Animales , Proteínas del Citoesqueleto/deficiencia , Neuronas Dopaminérgicas , Electroencefalografía/efectos de los fármacos , Potenciales Evocados , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/deficiencia , Neuronas , Técnicas de Placa-Clamp , Reflejo de Sobresalto/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/genética , Filtrado Sensorial , Conducta Social
11.
Semin Cell Dev Biol ; 77: 10-16, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28890418

RESUMEN

The activity-regulated cytoskeleton-associated protein (Arc) is a neuron-expressed activity regulated immediate early gene (IEG) product that is essential for memory consolidation and serves as a direct readout for neural activation during learning. Arc contributes to diverse forms of synaptic plasticity mediated by the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Notably, Arc protein expression abruptly increases and then rapidly decreases following augmented network activity. A large body of work has focused on Arc transcription and translation. Far fewer studies have explored the relevance of Arc protein stability and turnover. Here, we review recent findings on the mechanisms controlling Arc degradation and discuss its contributions to AMPA receptor trafficking and synaptic plasticity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Ubiquitinación/fisiología , Animales , Proteínas del Citoesqueleto/genética , Aprendizaje/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/fisiología , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Semin Cell Dev Biol ; 77: 17-24, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28890421

RESUMEN

The activity-regulated cytoskeleton associated protein (Arc/Arg3.1) plays a key role in determining synaptic strength through facilitation of AMPA receptor (AMPAR) endocytosis. Although there is considerable data on the mechanism by which Arc induction controls synaptic plasticity and learning behaviours, several key mechanistic questions remain. Here we review data on the link between Arc expression and the clathrin-mediated endocytic pathway which internalises AMPARs and discuss the significance of Arc binding to the clathrin adaptor protein 2 (AP-2) and to endophilin/dynamin. We consider which AMPAR subunits are selected for Arc-mediated internalisation, implications for synaptic function and consider Arc as a therapeutic target.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Endocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Clatrina/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Dinaminas/metabolismo , Humanos , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología
13.
Semin Cell Dev Biol ; 77: 3-9, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28890422

RESUMEN

One of the most interesting features of Arc-dependent synaptic plasticity is how multiple types of synaptic activity can converge to alter Arc transcription and then diverge to induce different plasticity outcomes, ranging from AMPA receptor internalisation that promotes long-term depression (LTD), to actin stabilisation that promotes long-term potentiation (LTP). This diversity suggests that there must be numerous levels of control to ensure the temporal profile, abundance, localisation and function of Arc are appropriately regulated to effect learning and memory in the correct contexts. The activity-dependent transcription and post-translational modification of Arc are crucial regulators of synaptic plasticity, fine-tuning the function of this key protein depending on the specific situation. The extensive cross-talk between signalling pathways and the numerous routes of Arc regulation provide a complex interplay of processes in which Arc-mediated plasticity can be broadly induced, but specifically tailored to synaptic activity. Here we provide an overview what is currently known about these processes and potential future directions.


Asunto(s)
Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Procesamiento Proteico-Postraduccional/genética , Transcripción Genética/genética , Animales , Señalización del Calcio/fisiología , AMP Cíclico/metabolismo , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Ratones , Plasticidad Neuronal/fisiología , Ratas , Receptores AMPA/metabolismo , Sumoilación , Ubiquitinación
14.
Semin Cell Dev Biol ; 77: 25-32, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28943393

RESUMEN

Dendritic spines are actin-rich, postsynaptic protrusions that contact presynaptic terminals to form excitatory chemical synapses. These synaptic contacts are widely believed to be the sites of memory formation and information storage, and changes in spine shape are thought to underlie several forms of learning-related plasticity. Both membrane trafficking pathways and the actin cytoskeleton drive activity-dependent structural and functional changes in dendritic spines. A key molecular player in regulating these processes is the activity-regulated cytoskeleton-associated protein (Arc), a protein that has diverse roles in expression of synaptic plasticity. In this review, we highlight important findings that have shaped our understanding of Arc's functions in structural and functional plasticity, as well as Arc's contributions to memory consolidation and disease.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Espinas Dendríticas/ultraestructura , Endocitosis/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Actinas/metabolismo , Espinas Dendríticas/fisiología , Humanos
15.
Semin Cell Dev Biol ; 77: 51-62, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28969983

RESUMEN

The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.


Asunto(s)
Trastornos del Conocimiento/patología , Proteínas del Citoesqueleto/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Región CA1 Hipocampal/metabolismo , Trastornos del Conocimiento/genética , Dendritas/metabolismo , Endocitosis/fisiología , Humanos , Células de Purkinje/metabolismo , Receptores de Glutamato/metabolismo
16.
J Neurosci ; 35(2): 819-30, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589774

RESUMEN

Fear memories typically persist for long time periods, and persistent fear memories contribute to post-traumatic stress disorder. However, little is known about the cellular and synaptic mechanisms that perpetuate long-term memories. Here, we find that mouse hippocampal CA1 neurons exhibit biphasic Arc (also known as Arg3.1) elevations after fear experience and that the late Arc expression regulates the perpetuation of fear memoires. An early Arc increase returned to the baseline after 6 h, followed by a second Arc increase after 12 h in the same neuronal subpopulation; these elevations occurred via distinct mechanisms. Antisense-induced blockade of late Arc expression disrupted memory persistence but not formation. Moreover, prolonged fear memories were associated with the delayed, specific elimination of dendritic spines and the reactivation of neuronal ensembles formed during fear experience, both of which required late Arc expression. We propose that late Arc expression refines functional circuits in a delayed fashion to prolong fear memory.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Espinas Dendríticas/metabolismo , Miedo , Memoria , Proteínas del Tejido Nervioso/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Condicionamiento Clásico , Proteínas del Citoesqueleto/genética , Espinas Dendríticas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Tiempo de Reacción
17.
Biochim Biophys Acta ; 1850(6): 1310-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25783003

RESUMEN

BACKGROUND: The Activity-regulated cytoskeleton-associated protein, Arc, is an immediate-early gene product implicated in various forms of synaptic plasticity. Arc promotes endocytosis of AMPA type glutamate receptors and regulates cytoskeletal assembly in neuronal dendrites. Its role in endocytosis may be mediated by its reported interaction with dynamin 2, a 100 kDa GTPase that polymerizes around the necks of budding vesicles and catalyzes membrane scission. METHODS: Enzymatic and turbidity assays are used in this study to monitor effects of Arc on dynamin activity and polymerization. Arc oligomerization is measured using a combination of approaches, including size exclusion chromatography, sedimentation analysis, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. RESULTS: We present evidence that bacterially-expressed His6-Arc facilitates the polymerization of dynamin 2 and stimulates its GTPase activity under physiologic conditions (37°C and 100mM NaCl). At lower ionic strength Arc also stabilizes pre-formed dynamin 2 polymers against GTP-dependent disassembly, thereby prolonging assembly-dependent GTP hydrolysis catalyzed by dynamin 2. Arc also increases the GTPase activity of dynamin 3, an isoform of implicated in dendrite remodeling, but does not affect the activity of dynamin 1, a neuron-specific isoform involved in synaptic vesicle recycling. We further show in this study that Arc (either His6-tagged or untagged) has a tendency to form large soluble oligomers, which may function as a scaffold for dynamin assembly and activation. CONCLUSIONS AND GENERAL SIGNIFICANCE: The ability of Arc to enhance dynamin polymerization and GTPase activation may provide a mechanism to explain Arc-mediated endocytosis of AMPA receptors and the accompanying effects on synaptic plasticity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Dinaminas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Dinamina I/metabolismo , Dinamina II/metabolismo , Dinamina III/metabolismo , Dinaminas/química , Activación Enzimática , Guanosina Trifosfato/metabolismo , Histidina/metabolismo , Humanos , Hidrólisis , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Oligopéptidos/metabolismo , Polimerizacion , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Cloruro de Sodio/química , Temperatura , Factores de Tiempo
18.
Synapse ; 70(3): 87-97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26562488

RESUMEN

Lead exposure has been implicated in the impairment of synaptic plasticity in the hippocampal dentate gyrus (DG) areas of rats. However, whether the degradation of physiological properties is based on the morphological alteration of granule neurons in DG areas remains elusive. Here, we examined the dendritic branch extension and spine formation of granule neurons after lead exposure during development in rats. Dendritic morphology was studied using Golgi-Cox stain method, which was followed by Sholl analysis at postnatal days 14 and 21. Our results indicated that, for both ages, lead exposure significantly decreased the total dendritic length and spine density of granule neurons in the DG of the rat hippocampus. Further branch order analysis revealed that the decrease of dendritic length was observed only at the second branch order. Moreover, there were obvious deficits in the proportion and size of mushroom-type spines. These deficits in spine formation and maturity were accompanied by a decrease in Arc/Arg3.1 expression. Our present findings are the first to show that developmental lead exposure disturbs branch and spine formation in hippocampal DG areas. Arc/Arg3.1 may have a critical role in the disruption of neuronal morphology and synaptic plasticity in lead-exposed rats.


Asunto(s)
Dendritas/patología , Giro Dentado/patología , Intoxicación del Sistema Nervioso por Plomo/patología , Animales , Western Blotting , Proteínas del Citoesqueleto/metabolismo , Dendritas/efectos de los fármacos , Dendritas/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Plomo/toxicidad , Intoxicación del Sistema Nervioso por Plomo/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Distribución Aleatoria , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Sinapsis/efectos de los fármacos , Sinapsis/patología , Sinapsis/fisiología
19.
J Neurosci ; 34(13): 4481-93, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24671994

RESUMEN

Arc is an immediate early gene that is unique among neuronal mRNAs because its transcripts are transported into dendrites and accumulate near activated synapses, presumably to be translated locally. These qualities pose Arc as playing an important, yet not fully understood, role in the activity-dependent modifications of synapses that are thought to underlie memory storage. Here we show in vivo in rats that newly synthesized Arc mRNA accumulates at activated synapses and that synaptic activity simultaneously triggers mRNA decay that eliminates Arc mRNA from inactive dendritic domains. Arc mRNA degradation occurs throughout the dendrite and requires both NMDA receptor activation and active translation. Synaptic activation did not lead to decreases in another dendritic mRNA (αCaMKII), indicating that there is not a general activation of mRNA degradation in dendrites. These data reveal a novel mechanism for controlling mRNA distribution within dendrites and highlight activity-dependent mRNA degradation as a regulatory process involved in synaptic plasticity.


Asunto(s)
Proteínas del Citoesqueleto/genética , Dendritas/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Transcripción Genética/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Antagonistas de Aminoácidos Excitadores , Femenino , Lateralidad Funcional , Hipocampo/citología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Transducción de Señal , Sinapsis/metabolismo , Factores de Tiempo
20.
J Neurosci ; 34(19): 6583-95, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806683

RESUMEN

The brain encodes information about past experience in specific populations of neurons that communicate with one another by firing action potentials. Studies of experience-dependent neural plasticity have largely focused on individual synaptic changes in response to neuronal input. Indicative of the neuronal output transmitted to downstream neurons, persistent firing patterns are affected by prior experience in selective neuronal populations. However, little is known about the molecular and cellular mechanisms by which experience-related persistent firing patterns are regulated in specific neuronal populations. Using frontal cortical slices prepared from transgenic mice carrying a fluorescent reporter of Arc gene expression, this study investigates how behavioral experience and the activity-regulated Arc gene affect patterns of neuronal firing. We found that motor training increases Arc expression in subsets of excitatory neurons. Those neurons exhibit persistent firing in contrast to Arc-negative neurons from the same mice or neurons from the untrained mice. Furthermore, in mice carrying genetic deletion of Arc, the frontal cortical circuitry is still in place to initiate experience-dependent gene expression, but the level of persistent firing thereafter is diminished. Finally, our results showed that the emergence of persistent activity is associated with Arc-dependent changes in the function of NMDA-type glutamate receptors, rather than changes in AMPA-type receptors or membrane excitability. Our findings therefore reveal an Arc-dependent molecular pathway by which gene-experience interaction regulates the emergence of persistent firing patterns in specific neuronal populations.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Proteínas del Tejido Nervioso/fisiología , Corteza Prefrontal/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Bicuculina/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Destreza Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Equilibrio Postural/fisiología , Corteza Prefrontal/efectos de los fármacos , Receptores AMPA/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA