Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0015524, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456673

RESUMEN

Humans and mammals need to ingest essential amino acids (EAAs) for protein synthesis. In addition to their importance as nutrients, EAAs are involved in brain homeostasis. However, elderly people are unable to efficiently consume EAAs from their daily diet due to reduced appetite and variations in the contents of EAAs in foods. On the other hand, strains of the yeast Saccharomyces cerevisiae that accumulate EAAs would enable elderly people to intakegest adequate amounts of EAAs and thus might slow down the neurodegenerative process, contributing to the extension of their healthy lifespan. In this study, we isolated a mutant (strain HNV-5) that accumulates threonine, an EAA, derived from a diploid laboratory yeast by conventional mutagenesis. Strain HNV-5 carries a novel mutation in the HOM3 gene encoding the Ala462Thr variant of aspartate kinase (AK). Enzymatic analysis revealed that the Ala462Thr substitution significantly decreased the sensitivity of AK activity to threonine feedback inhibition even in the presence of 50 mM threonine. Interestingly, Ala462Thr substitution did not affect the catalytic ability of Hom3, in contrast to previously reported amino acid substitutions that resulted in reduced sensitivity to threonine feedback inhibition. Furthermore, yeast cells expressing the Ala462Thr variant showed an approximately threefold increase in intracellular threonine content compared to that of the wild-type Hom3. These findings will be useful for the development of threonine-accumulating yeast strains that may improve the quality of life in elderly people.IMPORTANCEFor humans and mammals, essential amino acids (EAAs) play an important role in maintaining brain function. Therefore, increasing the intake of EAAs by using strains of the yeast Saccharomyces cerevisiae that accumulate EAAs may inhibit neurodegeneration in elderly people and thus contribute to extending healthy lifespan and improving their quality of life. Threonine, an EAA, is synthesized from aspartate. Aspartate kinase (AK) catalyzes the first step in threonine biosynthesis and is subject to allosteric regulation by threonine. Here, we isolated a threonine-accumulating mutant of S. cerevisiae by conventional mutagenesis and identified a mutant gene encoding a novel variant of AK. In contrast to previously isolated variants, the Hom3 variant exhibited AK activity that was insensitive to feedback inhibition by threonine but retained its catalytic ability. This resulted in increased production of threonine in yeast. These findings open up the possibility for the rational design of AK to increase threonine productivity in yeast.


Asunto(s)
Aspartato Quinasa , Saccharomyces cerevisiae , Humanos , Animales , Anciano , Saccharomyces cerevisiae/metabolismo , Treonina , Aspartato Quinasa/química , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Retroalimentación , Calidad de Vida , Mamíferos
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047295

RESUMEN

Previous works have shown the existence of protein partnership, belonging to a MultiStep Phosphorelay (MSP), potentially involved in osmosensing in Populus. The first actor of this signalling pathway belongs to the histidine-aspartate kinase (HK) family, which also includes the yeast osmosensor Sln1, as well as the Arabidopsis putative osmosensor AHK1. In poplar, the homologous AHK1 protein corresponds to a pair of paralogous proteins, HK1a and HK1b, exhibiting an extracellular domain (ECD), as in Sln1 and AHK1. An ECD alignment of AHK1-like proteins, from different plant species, showed a particularly well conserved ECD and revealed the presence of a cache domain. This level of conservation suggested a functional role of this domain in osmosensing. Thus, we tested this possibility by modelling assisted mutational analysis of the cache domain of the Populus HK1 proteins. The mutants were assessed for their ability to respond to different osmotic stress and the results point to an involvement of this domain in HK1 functionality. Furthermore, since HK1b was shown to respond better to stress than HK1a, these two receptors constituted a good system to search for osmosensing determinants responsible for this difference in efficiency. With domain swapping experiments, we finally demonstrated that the cache domain, as well as the second transmembrane domain, are involved in the osmosensing efficiency of these receptors.


Asunto(s)
Arabidopsis , Populus , Proteínas de Saccharomyces cerevisiae , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Ácido Aspártico/metabolismo , Histidina/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Populus/genética , Populus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Bioprocess Biosyst Eng ; 45(3): 541-551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066675

RESUMEN

This study aimed to improve the catalytic activity of aspartate kinase (AK), the first key rate-limiting enzyme in the aspartic acid metabolism pathway, by site-directed saturation mutagenesis, and to weaken the synergistic feedback inhibition of metabolites and analyze its mechanism using molecular dynamics simulation (MD). The key residual sites around the inhibitor lysine (Lys) were selected to construct the mutant strains. The mutant A380M with significantly increased enzyme activity was obtained through enzyme activity screening. Kinetic analysis showed that the Vmax value increased to 15.73 U/mg, which was 4.8 times higher than that of wild-type AK (WT AK) (3.28 U/mg). The Kn value decreased to 0.61 mM, which was significantly lower than that of the wild type (4.77 mM), indicating that the substrate affinity increased. The enzyme properties analysis showed that the optimum temperature of the mutant A380M increased from 26 °C to 35 °C, the optimum pH remained unchanged. The stability was determined at optimum temperature (35 °C) and optimum pH 8.0, and it decreased from 4.8 h to 2.7 h. The feedback inhibition was weakened, showing a significant activation with the highest relative enzyme activity of 123.29% (Water was used instead of inhibitor as blank control group, and the highest enzyme activity was defined as 100%). Molecular dynamics simulations showed that the distance between ATP and Asp was shortened after mutation. The binding force and interaction between AK and ATP and substrate Asp were enhanced. The distance between catalytic residues D193 and S192 and substrate Asp was shortened.


Asunto(s)
Aspartato Quinasa , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Ácido Aspártico , Cinética , Mutagénesis , Mutagénesis Sitio-Dirigida
4.
Plant Biotechnol J ; 19(3): 490-501, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32945115

RESUMEN

Lysine is the main limiting essential amino acid (EAA) in the rice seeds, which is a major energy and nutrition source for humans and livestock. In higher plants, the rate-limiting steps in lysine biosynthesis pathway are catalysed by two key enzymes, aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS), and both are extremely sensitive to feedback inhibition by lysine. In this study, two rice AK mutants (AK1 and AK2) and five DHDPS mutants (DHDPS1-DHDPS5), all single amino acid substitution, were constructed. Their protein sequences passed an allergic sequence-based homology alignment. Mutant proteins were recombinantly expressed in Escherichia coli, and all were insensitive to the lysine analog S-(2-aminoethyl)-l-cysteine (AEC) at concentrations up to 12 mm. The AK and DHDPS mutants were transformed into rice, and free lysine was elevated in mature seeds of transgenic plants, especially those expressing AK2 or DHDPS1, 6.6-fold and 21.7-fold higher than the wild-type (WT) rice, respectively. We then engineered 35A2D1L plants by simultaneously expressing modified AK2 and DHDPS1, and inhibiting rice LKR/SDH (lysine ketoglutaric acid reductase/saccharopine dehydropine dehydrogenase). Free lysine levels in two 35A2D1L transgenic lines were 58.5-fold and 39.2-fold higher than in WT and transgenic rice containing native AK and DHDPS, respectively. Total free amino acid and total protein content were also elevated in 35A2D1L transgenic rice. Additionally, agronomic performance analysis indicated that transgenic lines exhibited normal plant growth, development and seed appearance comparable to WT plants. Thus, AK and DHDPS mutants may be used to improve the nutritional quality of rice and other cereal grains.


Asunto(s)
Aspartato Quinasa , Oryza , Aspartato Quinasa/genética , Biofortificación , Retroalimentación , Hidroliasas , Lisina , Oryza/genética
5.
Appl Microbiol Biotechnol ; 105(18): 6899-6908, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34455479

RESUMEN

Lysine, a nutritionally important amino acid, is involved in adaptation and tolerance to environmental stresses in various organisms. Previous studies reported that lysine accumulation occurs in response to stress and that lysine supplementation enhances stress tolerance; however, the effect of lysine biosynthesis enhancement on stress tolerance has yet to be elucidated. In this study, we confirmed that lysine supplementation to the culture medium increased intracellular lysine content and improved cell growth of Escherichia coli at high temperature (42.5 °C). Lysine-overproducing strains were then isolated from the lysine analogue S-adenosylmethionine-resistant mutants by conventional mutagenesis and exhibited higher tolerance to high-temperature stress than the wild-type strain. We identified novel amino acid substitutions Gly474Asp and Cys554Tyr on ThrA, a bifunctional aspartate kinase/homoserine dehydrogenase (AK/HSDH), in the lysine-overproducing mutants. Interestingly, the Gly474Asp and Cys554Tyr variants of ThrA induced lysine accumulation and conferred high-temperature stress tolerance to E. coli cells. Enzymatic analysis revealed that the Gly474Asp substitution in ThrA reduced HSDH activity, suggesting that the intracellular level of aspartate semialdehyde, which is a substrate for HSDH and an intermediate for lysine biosynthesis, is elevated by the loss of HSDH activity and converted to lysine in E. coli. The present study demonstrated that both lysine supplementation and lysine biosynthesis enhancement improved the high-temperature stress tolerance of E. coli cells. Our findings suggest that lysine-overproducing strains have the potential as stress-tolerant microorganisms and can be applied to robust host cells for microbial production of useful compounds. KEY POINTS: • Lysine supplementation improved the growth of E. coli cells at high temperature. • The G474D and C554Y variant ThrA increased lysine productivity in E. coli cells. • The G474D substitution in ThrA reduced homoserine dehydrogenase activity. • E. coli cells that overproduce lysine exhibited high-temperature stress tolerance.


Asunto(s)
Aspartoquinasa Homoserina Deshidrogenasa , Escherichia coli , Aminoácidos , Escherichia coli/genética , Lisina , Temperatura
6.
Biochem J ; 475(6): 1107-1119, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29382741

RESUMEN

In plants and microorganisms, aspartate kinase (AK) catalyzes an initial commitment step of the aspartate family amino acid biosynthesis. Owing to various structural organizations, AKs from different species show tremendous diversity and complex allosteric controls. We report the crystal structure of AK from Pseudomonas aeruginosa (PaAK), a typical α2ß2 hetero-tetrameric enzyme, in complex with inhibitory effectors. Distinctive features of PaAK are revealed by structural and biochemical analyses. Essentially, the open conformation of Lys-/Thr-bound PaAK structure clarifies the inhibitory mechanism of α2ß2-type AK. Moreover, the various inhibitory effectors of PaAK have been identified and a general amino acid effector motif of AK family is described.


Asunto(s)
Aspartato Quinasa/química , Aspartato Quinasa/metabolismo , Pseudomonas aeruginosa/enzimología , Regulación Alostérica/genética , Sitio Alostérico/genética , Secuencia de Aminoácidos , Aspartato Quinasa/genética , Catálisis , Modelos Moleculares , Organismos Modificados Genéticamente , Dominios y Motivos de Interacción de Proteínas/genética , Pseudomonas aeruginosa/genética , Alineación de Secuencia
7.
Biosci Biotechnol Biochem ; 82(12): 2084-2093, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30175674

RESUMEN

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 µM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 µM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine. Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK-HseDH: bifunctional aspartate kinase-homoserine dehydrogenase; AsaDH: aspartate-ß-semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).


Asunto(s)
Aspartoquinasa Homoserina Deshidrogenasa/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Ácido Aspártico/metabolismo , Aspartoquinasa Homoserina Deshidrogenasa/química , Aspartoquinasa Homoserina Deshidrogenasa/genética , Biocatálisis , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Escherichia coli/genética , Calor , Concentración de Iones de Hidrógeno , Cinética , Conformación Proteica , Proteínas Recombinantes/genética , Homología de Secuencia de Aminoácido , Treonina/metabolismo
8.
Biosci Biotechnol Biochem ; 80(11): 2255-2263, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27485103

RESUMEN

Streptomyces murayamensis carries two aspartate kinase (AK) genes: one for the biosynthesis of lysine, threonine, and methionine, and the other (nspJ) contained in the biosynthetic gene cluster for the secondary metabolite, 4-hydroxy-3-nitrosobenzamide, for catalyzing the first reaction. AKs involved in the biosynthesis of amino acids are often regulated allosterically by the end products. In the present study, we characterized NspJ to investigate whether AKs involved in secondary metabolism were also allosterically regulated. NspJ was in α2ß2 and (α2ß2)2 heterooligomeric forms, and was insensitive to all the compounds tested including lysine, threonine, and methionine. The reduction in the activity following the removal of ammonium sulfate, which induced subunit dissociation, suggests that the ß subunit may be involved in stabilizing the structure of the α subunit in order to exhibit its activity. This study has provided the first example of a feedback-insensitive α2ß2-type AK, which is involved in the secondary metabolism.

9.
J Ind Microbiol Biotechnol ; 43(6): 873-85, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27033538

RESUMEN

Previously we have characterized a threonine dehydratase mutant TD(F383V) (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHAS(P176S, D426E, L575W) (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best L-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AK(A279T) (encoded by lysC1) and a homoserine dehydrogenase mutant HD(G378S) (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AK(A279T) is completely resistant to feed-back inhibition by L-threonine and L-lysine, and that HD(G378S) is partially resistant to L-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive L-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from L-lysine (decreased by 50.1 %) to L-threonine (4.85 g/L) with minor L-isoleucine and no L-homoserine accumulation, further co-expressing ilvA1 completely depleted L-threonine and strongly shifted carbon flux from L-lysine (decreased by 83.0 %) to L-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TD(F383V) might be the main driving force for L-isoleucine over-synthesis in this case, and the partially feed-back resistant HD(G378S) might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.


Asunto(s)
Aspartato Quinasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/enzimología , Homoserina Deshidrogenasa/metabolismo , Isoleucina/biosíntesis , Aminoácidos/metabolismo , Corynebacterium glutamicum/genética , Medios de Cultivo/química , Fragmentación del ADN , Fermentación , Microbiología Industrial , Lisina/metabolismo , Ingeniería Metabólica , Treonina/biosíntesis
10.
Int J Mol Sci ; 17(12)2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27941652

RESUMEN

Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.


Asunto(s)
Ácido Aspártico/metabolismo , Presión Osmótica , Populus/enzimología , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Aminoácidos/metabolismo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Histidina Quinasa , Proteínas Mutantes/metabolismo , Mutación/genética , Filogenia , Populus/genética , Unión Proteica , Multimerización de Proteína , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
11.
Appl Microbiol Biotechnol ; 99(20): 8527-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25935345

RESUMEN

Aspartate kinase (AK) is a key enzyme involved in catalyzing the first step of the aspartate-derived amino acid biosynthesis, including L-lysine and L-threonine, which is regulated by the end-metabolites through feedback inhibition. In order to accumulate the end-metabolites in the host, the feedback inhibition of AK has to be released. In this study, a chimeric aspartate kinase, which is composed of the N-terminal catalytic region from Bacillus subtilis AKII and the C-terminal region from Thermus thermophilus, was evolved through random mutagenesis and then screened using a high-throughput synthetic RNA device which comprises of an L-lysine-sensing riboswitch and a selection module. Of three evolved aspartate kinases, the best mutant BT3 showed 160 % increased in vitro activity compared to the wild-type enzyme. Recombinant Escherichia coli harboring BT3 produced 674 mg/L L-lysine in batch cultivation, similar to that produced by the strain harboring the typical commercial widely used feedback resistant aspartate kinase AKC (fbr) from E. coli. The results suggested that this strategy can be extended for screening of other key enzymes involved in lysine biosynthesis pathways.


Asunto(s)
Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Bacillus subtilis/enzimología , Lisina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Thermus thermophilus/enzimología , Bacillus subtilis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Pruebas Genéticas/métodos , Thermus thermophilus/genética
12.
Int J Mol Sci ; 16(12): 28270-84, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26633359

RESUMEN

Aspartate kinase (AK) is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni(2+). Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production.


Asunto(s)
Aspartato Quinasa/química , Dominio Catalítico , Corynebacterium/enzimología , Modelos Moleculares , Conformación Proteica , Secuencia de Aminoácidos , Aspartato Quinasa/antagonistas & inhibidores , Aspartato Quinasa/genética , Sitios de Unión , Corynebacterium/genética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Datos de Secuencia Molecular , Mutación , Proteínas Recombinantes , Alineación de Secuencia , Solventes , Termodinámica
13.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569988

RESUMEN

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Asunto(s)
Aspartato Quinasa , Brugia Malayi , Simulación de Dinámica Molecular , Wolbachia , Brugia Malayi/enzimología , Brugia Malayi/microbiología , Regulación Alostérica , Animales , Aspartato Quinasa/metabolismo , Aspartato Quinasa/genética , Aspartato Quinasa/química , Simbiosis , Adenosina Trifosfato/metabolismo , Lisina/química , Lisina/metabolismo
15.
Plant Sci ; 283: 195-201, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128689

RESUMEN

Methionine and threonine are two essential amino acids whose low levels limit the nutritional quality of seeds. The current objective was to define factors that regulate and might increase their levels in seeds. Feeding experiments carried out on receptacles of developing tobacco (Nicotiana tabacum) capsules showed that 1 mM of S-methylmethionine increased the level of methionine to contents similar to 2.5 mM of homoserine, an intermediate metabolite of the aspartate family of amino acids. The latter also increased the level of threonine. Based on these findings, we generated tobacco seeds that expressed a combination of bacterial feedback-insensitive aspartate kinase (bAK), which was previously reported to have a high level of threonine/methionine, and feedback-insensitive cystathionine γ-synthase (CGS), the regulatory enzyme of the methionine biosynthesis pathway. Plants expressing this latter gene previously showed having higher levels of methionine. The results of total amino acids analysis showed that the level of threonine was highest in the bAK line, which has moderate levels of methionine and lysine, while the highest level of methionine was found in seeds expressing both heterologous genes. The results suggest that the level of threonine in tobacco seeds is limited by the substrate, while that of methionine is limited also by the activity of CGS.


Asunto(s)
Liasas de Carbono-Oxígeno/metabolismo , Metionina/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Treonina/metabolismo , Aminoácidos/metabolismo , Homoserina/metabolismo , Redes y Vías Metabólicas , Plantas Modificadas Genéticamente , Semillas/enzimología , Nicotiana/enzimología
16.
Plants (Basel) ; 8(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835814

RESUMEN

We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.

17.
Front Plant Sci ; 7: 917, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446147

RESUMEN

Free asparagine plays a central role in nitrogen storage and transport in many plant species due to its relatively high ratio of nitrogen to carbon. However, it is also a precursor for acrylamide, a Class 2a carcinogen that forms during high-temperature processing and cooking. The concentration of free asparagine was shown to increase by approximately 70% in rye grain in response to severe sulfur deficiency (F-test, p = 0.004), while the concentration of both free asparagine and free glutamine increased (by almost threefold and approximately 62%, respectively) in response to nitrogen application (F-test, p < 0.001 for free asparagine; p = 0.004 for free glutamine). There were also effects of nutrient supply on other free amino acids: The concentration of free proline, for example, showed a significant (F-test, p = 0.019) effect of nitrogen interacting with sulfur, with the highest concentration occurring when the plants were deprived of both nitrogen and sulfur. Polymerase chain reaction products for several genes involved in asparagine metabolism and its regulation were amplified from rye grain cDNA. These genes were asparagine synthetase-1 (ScASN1), glutamine synthetase-1 (ScGS1), potassium-dependent asparaginase (ScASP), aspartate kinase (ScASK), and general control non-derepressible-2 (ScGCN2). The expression of these genes and of a previously described sucrose non-fermenting-1-related protein kinase-1 gene (ScSnRK1) was analyzed in flag leaf and developing grain in response to nitrogen and sulfur supply, revealing a significant (F-test, p < 0.05) effect of nitrogen supply on ScGS1 expression in the grain at 21 days post-anthesis. There was also evidence of an effect of sulfur deficiency on ScASN1 gene expression. However, although this effect was large (almost 10-fold) it was only marginally statistically significant (F-test, 0.05 < p < 0.10). The study reinforced the conclusion that nutrient availability can have a profound impact on the concentrations of different free amino acids, something that is often overlooked by plant physiologists but which has important implications for flavor, color, and aroma development during cooking and processing, as well as the production of undesirable contaminants such as acrylamide.

18.
Plant Physiol Biochem ; 87: 73-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25559386

RESUMEN

The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one aspartate-derived amino acid (threonine), but major changes were also detected in the metabolism of lysine and methionine. Modifications in the activities and regulation of aspartate kinase, dihydrodipicolinate synthase and homoserine dehydrogenase were observed in most transgenic lines. Furthermore the activities of lysine α-ketoglutarate reductase and saccharopine dehydrogenase were also altered, although the extent varied among the transgenic lines.


Asunto(s)
ADN sin Sentido , Glútenes , Hordeum/metabolismo , Lisina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Hordeum/genética , Lisina/genética , Plantas Modificadas Genéticamente/genética
19.
Biotechnol Rep (Amst) ; 3: 73-85, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25170437

RESUMEN

Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

20.
Artículo en Zh | WPRIM | ID: wpr-744506

RESUMEN

Objective To explore the clinical value of alanine aminotransferase (ALT),aspartate aminotransferase(AST) and gamma-glutamine transpeptidase(GGT) in the diagnosis of hepatitis B-related hepatocellular carcinoma,and to provide reference for clinical diagnosis.Methods From November 2015 to November 2017,118 patients with hepatitis B-related primary liver cancer (hepatitis B-related primary liver cancer group) admitted to Tongji Huangzhou Hospital of Huazhong University of Science and Technology were selected.And 116 patients with cirrhosis (hepatocirrhosis group) and 114 healthy people were selected as control group.The levels of ALT,AST and GGT and the specificity and sensitivity of each index were compared among the three groups,and the ROC curve was analyzed.Results The levels of serum ALT,AST and GGT in the hepatitis B-related primary hepatocellular carcinoma group were higher than those in the cirrhosis group and the control group,and the above serum indicators in the cirrhosis group were higher than those in the control group [(267.1 ± 131.5) U/L vs.(31.2 ± 11.3) U/L vs.(17.4 ± 4.6) U/L,(76.6 ± 23.2) U/L vs.(45.2 ± 13.1) U/L vs.(24.3 ± 6.6) U/L,(125.3 ± 42.6) U/L vs.(53.1 ± 17.6)U/L vs.(22.4 ± 4.4)U/L,all P < 0.05].ROC curve showed that the area under GGT curve was 0.85,under ALT curve was 0.78,and under AST curve was 0.73,the area under the combined diagnostic curve of the three indicators was 0.95.The sensitivity and specificity of three combined diagnosis were higher than those of ALT,AST and GGT.Conclusion The levels of serum ALT,AST and GGT in patients with hepatitis B-related primary liver cancer are elevated,and the combined diagnosis of the three indicators has high sensitivity and specificity,which is worthy of clinical reference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA