Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.428
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(19): 5282-5297.e20, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168125

RESUMEN

Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.


Asunto(s)
Cromatina , ADN , Elasticidad , Cromatina/metabolismo , Cromatina/química , ADN/metabolismo , ADN/química , Humanos , Viscosidad , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Sitios Genéticos
2.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37167971

RESUMEN

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Ratones , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Piel , Membrana Celular
3.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179668

RESUMEN

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Pericitos
4.
Mol Cell ; 84(17): 3254-3270.e9, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39153474

RESUMEN

The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells. We show that Ki-67 dephosphorylation during mitotic exit and the simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface. Experiments and coarse-grained simulations support a model in which the coalescence of chromosome surfaces, driven by co-condensation of Ki-67 and RNA, promotes clustering of chromosomes. Our study reveals how the switch of Ki-67 from a surfactant to a liquid-like condensed phase can generate mechanical forces during genome segregation that are required for re-establishing nuclear-cytoplasmic compartmentalization after mitosis.


Asunto(s)
Segregación Cromosómica , Cromosomas Humanos , Antígeno Ki-67 , Mitosis , Humanos , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Células HeLa , Cromosomas Humanos/metabolismo , Cromosomas Humanos/genética , Fosforilación , Anafase
5.
Proc Natl Acad Sci U S A ; 121(32): e2402252121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074268

RESUMEN

Drop-fiber interactions are fundamental to the operation of technologies such as atmospheric fog capture, oil filtration, refrigeration, and dehumidification. We demonstrate that by twisting together two fibers, a sliding drop's flow path can be controlled by tuning the ratio between its size and the twist wavelength. We find both experimentally and numerically that twisted fiber systems are able to asymmetrically stabilize drops, both enhancing drop transport speeds and creating a rich array of new flow patterns. We show that the passive flow control generated by twisting fibers allows for woven nets that can be "programmed" with junctions that predetermine drop interactions and can be anticlogging. Furthermore, it is shown that twisted fiber structures are significantly more effective at capturing atmospheric fog compared to straight fibers.

6.
Proc Natl Acad Sci U S A ; 121(37): e2321021121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39236241

RESUMEN

In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a feature of many neurological disorders and injuries and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ~59% of the injuries resulted in regression of the capillary segment 7 to 14 d following injury, and the remaining repaired to reestablish blood flow within 7 d. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days postinjury in both awake and anesthetized mice. The degree of vasomotor dynamics was chronically attenuated in the ACT zone consequently reducing blood flow in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how focal capillary injury and regression can impair the microvascular sensory web and contribute to cerebral hypoperfusion.


Asunto(s)
Capilares , Circulación Cerebrovascular , Animales , Ratones , Capilares/fisiología , Circulación Cerebrovascular/fisiología , Vasoconstricción/fisiología , Encéfalo/irrigación sanguínea , Arteriolas/fisiopatología , Masculino , Vasodilatación/fisiología , Ratones Endogámicos C57BL
7.
EMBO Rep ; 25(3): 1650-1684, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424230

RESUMEN

Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.


Asunto(s)
Enfisema , Rarefacción Microvascular , Enfisema Pulmonar , Telomerasa , Ratones , Animales , Acortamiento del Telómero , Telomerasa/genética
8.
Annu Rev Physiol ; 84: 331-354, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34672718

RESUMEN

The vast majority of the brain's vascular length is composed of capillaries, where our understanding of blood flow control remains incomplete. This review synthesizes current knowledge on the control of blood flow across microvascular zones by addressing issues with nomenclature and drawing on new developments from in vivo optical imaging and single-cell transcriptomics. Recent studies have highlighted important distinctions in mural cell morphology, gene expression, and contractile dynamics, which can explain observed differences in response to vasoactive mediators between arteriole, transitional, and capillary zones. Smooth muscle cells of arterioles and ensheathing pericytes of the arteriole-capillary transitional zone control large-scale, rapid changes in blood flow. In contrast, capillary pericytes downstream of the transitional zone act on slower and smaller scales and are involved in establishing resting capillary tone and flow heterogeneity. Many unresolved issues remain, including the vasoactive mediators that activate the different pericyte types in vivo, the role of pericyte-endothelial communication in conducting signals from capillaries to arterioles, and how neurological disease affects these mechanisms.


Asunto(s)
Capilares , Pericitos , Arteriolas/fisiología , Sistema Nervioso Central , Circulación Cerebrovascular/fisiología , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-39324266

RESUMEN

BACKGROUND: Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1-Orai1 is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS: The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS: We explored Ca2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein-coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 µmol/L BTP2, 10 µmol/L GSK-7975A, and 5 µmol/L Gd3+. Whole-cell patch clamp measurements revealed enhanced Ca2+ release-activated Ca2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1, CXCL11, CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1AiΔEC) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1AiΔEC mice. CONCLUSIONS: Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39360412

RESUMEN

BACKGROUND: The protease thrombin, which elicits multiple physiological and pathological effects on vascular endothelial cells (ECs), can signal through PARs (protease-activated receptors) 1 and 4. PAR1 is a high-affinity thrombin receptor known to signal on ECs, whereas PAR4 is a low-affinity thrombin receptor, and evidence for its expression and function on ECs is mixed. This study aims to exploit the high levels of thrombin generation and hepatic vascular dysfunction that occur during acetaminophen (APAP) overdose to determine (1) whether hepatic endothelial PAR4 is a functional receptor, and (2) the endothelial-specific functions for PAR1 and PAR4 in a high thrombin and pathological setting. METHODS: We generated mice with conditional deletion of Par1/Par4 in ECs and overdosed them with APAP. Hepatic vascular permeability, erythrocyte accumulation in the liver, thrombin generation, and liver function were assessed following overdose. Additionally, we investigated the expression levels of endothelial PARs and how they influence transcription in APAP-overdosed liver ECs using endothelial translating ribosome affinity purification followed by next-generation sequencing. RESULTS: We found that mice deficient in high-expressing endothelial Par1 or low-expressing Par4 had equivalent reductions in APAP-induced hepatic vascular instability, although mice deficient for both receptors had lower vascular permeability at an earlier timepoint after APAP overdose than either of the single mutants. Additionally, mice with loss of both endothelial Par1 and Par4 had reduced thrombin generation after APAP overdose, suggesting decreased hypercoagulability. Last, we found that endothelial PAR1-but not PAR4-can regulate transcription in hepatic ECs. CONCLUSIONS: Low-expressing PAR4 can react similarly to high-expressing PAR1 in APAP-overdosed hepatic ECs, demonstrating that PAR4 is a potent thrombin receptor. Additionally, these receptors are functionally redundant but act divergently in their expression and ability to influence transcription in hepatic ECs.

11.
J Pathol ; 263(3): 347-359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734878

RESUMEN

Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales , Ratones Noqueados , Neutrófilos , Animales , Neutrófilos/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Ratones , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Endogámicos C57BL , Trampas Extracelulares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Pulmón/irrigación sanguínea
12.
Cell Mol Life Sci ; 81(1): 42, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217709

RESUMEN

Neprilysin (NEP) is an emerging biomarker for various diseases including heart failure (HF). However, major inter-assay inconsistency in the reported concentrations of circulating NEP and uncertainty with respect to its correlations with type and severity of disease are in part attributed to poorly characterized antibodies supplied in commercial ELISA kits. Validated antibodies with well-defined binding footprints are critical for understanding the biological and clinical context of NEP immunoassay data. To achieve this, we applied in silico epitope prediction and rational peptide selection to generate monoclonal antibodies (mAbs) against spatially distant sites on NEP. One of the selected epitopes contained published N-linked glycosylation sites at N285 and N294. The best antibody pair, mAb 17E11 and 31E1 (glycosylation-sensitive), were characterized by surface plasmon resonance, isotyping, epitope mapping, and western blotting. A validated two-site sandwich NEP ELISA with a limit of detection of 2.15 pg/ml and working range of 13.1-8000 pg/ml was developed with these mAbs. Western analysis using a validated commercial polyclonal antibody (PE pAb) and our mAbs revealed that non-HF and HF plasma NEP circulates as a heterogenous mix of moieties that possibly reflect proteolytic processing, post-translational modifications and homo-dimerization. Both our mAbs detected a ~ 33 kDa NEP fragment which was not apparent with PE pAb, as well as a common ~ 57-60 kDa moiety. These antibodies exhibit different affinities for the various NEP targets. Immunoassay results are dependent on NEP epitopes variably detected by the antibody pairs used, explaining the current discordant NEP measurements derived from different ELISA kits.


Asunto(s)
Anticuerpos Monoclonales , Insuficiencia Cardíaca , Humanos , Epítopos , Neprilisina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Inmunoensayo/métodos
13.
Bioessays ; 45(6): e2300023, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042128

RESUMEN

Hyperbaric oxygen (HBO) therapy still lacks proper interpretations of its many actions. This hypothesis is based on reports of temporarily elevated peripheral vascular resistance (PVR) during HBO sessions. Besides that, during HBO sessions, hyperoxygenated tissues can reduce their perfusion so much that CO2 can accumulate in them. Tissue perfusion depends on vascular innervation and on the balance between systemic constrictors and local dilators. During an HBO session, increased tissue oxygen levels suppress dilatory mechanisms. Tissue hyperoxygenation increases PVR, suggesting that the HBO action on an edematous tissue may be caused by an oxygen-induced disbalance among Starling capillary forces. The presented hypothesis is that oxygen-caused arteriolar constriction reduces the hydrostatic pressure in downstream capillaries. Thus, more tissue fluid is absorbed in vascular capillaries, under the condition that the plasma colloid osmotic pressure remains unaltered during the HBO session. Among several known mechanisms behind the HBO actions, the vasoconstriction has been listed as a therapeutic modality for the reduction of the tissue edema, for a crush injury, for burns (in an acute phase), and for the compartment syndrome. The Bell's palsy is among often listed indications for the HBO treatment, although evidence is poor and reports of randomized trials are scarce.


Asunto(s)
Oxigenoterapia Hiperbárica , Arteriolas , Capilares , Oxígeno
14.
Eur Heart J ; 45(35): 3274-3288, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39056467

RESUMEN

BACKGROUND AND AIMS: Based on retrospective studies, the 2022 European guidelines changed the definition of post-capillary pulmonary hypertension (pcPH) in heart failure (HF) by lowering the level of mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR). However, the impact of this definition and its prognostic value has never been evaluated prospectively. METHODS: Stable left HF patients with the need for right heart catheterization were enrolled from 2010 to 2018 and prospectively followed up in this multicentre study. The impact of the successive pcPH definitions on pcPH prevalence and subgroup [i.e. isolated (IpcPH) vs. combined pcPH (CpcPH)] was evaluated. Multivariable Cox regression analysis was used to assess the prognostic value of mPAP and PVR on all-cause death or hospitalization for HF (primary outcome). RESULTS: Included were 662 HF patients were (median age 63 years, 60% male). Lowering mPAP from 25 to 20 mmHg resulted in +10% increase in pcPH prevalence, whereas lowering PVR from 3 to 2 resulted in +60% increase in CpcPH prevalence (with significant net reclassification improvement for the primary outcome). In multivariable analysis, both mPAP and PVR remained associated with the primary outcome [hazard ratio (HR) 1.02, 95% confidence interval (CI) 1.00-1.03, P = .01; HR 1.07, 95% CI 1.00-1.14, P = .03]. The best PVR threshold associated with the primary outcome was around 2.2 WU. Using the 2022 definition, pcPH patients had worse survival compared with HF patients without pcPH (log-rank, P = .02) as well as CpcPH compared with IpcPH (log-rank, P = .003). CONCLUSIONS: This study is the first emphasizing the impact of the new pcPH definition on CpcPH prevalence and validating the prognostic value of mPAP > 20 mmHg and PVR > 2 WU among HF patients.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión Pulmonar , Resistencia Vascular , Humanos , Masculino , Femenino , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/epidemiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico , Persona de Mediana Edad , Resistencia Vascular/fisiología , Anciano , Pronóstico , Estudios Prospectivos , Cateterismo Cardíaco/métodos , Prevalencia
15.
Nano Lett ; 24(7): 2352-2359, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345565

RESUMEN

Ion-selective membrane has broad application in various fields, while the present solution-processed techniques can only prepare uniform membrane with microscale thickness. Herein, a high-quality polymer membrane with nanoscale thickness and uniformity is precisely prepared by controlling solution spreading and solvent evaporation stability/rate. With the arrayed capillaries, the stable spreading of polymer solution with volume of microliter induces the formation of solution film with micrometers thickness. Moreover, the fast increase of solution dynamic viscosity during solvent evaporation inhibits nonuniform Marangoni flow and capillary flow in solution film. Consequently, the uniform Nafion-Li membranes with ∼200 nm thickness are prepared, while their Li+ conductivity is 2 orders of magnitude higher than that of commercially Nafion-117 membrane. Taking lithium-sulfur battery as a model device, the cells (capacities of 8-10 mAh cm-2) can stably operate for 150 cycles at a S loading of 12 mg cm-2 and an electrolyte/sulfur ratio of ∼7.

16.
Nano Lett ; 24(18): 5625-5630, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38662431

RESUMEN

Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid-liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure. To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.

17.
Genesis ; 62(1): e23539, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37501352

RESUMEN

Classical collagen type IV comprising of a heterotrimer of two collagen IV alpha 1 chains and one collagen IV alpha 2 chain is the principal type of collagen synthesized by endothelial cells (EC) and is a major constituent of vascular basement membranes. In mouse and man, mutations in genes that encode collagen IV alpha 1 and alpha 2 result in vascular dysfunction. In addition, mutations in genes that encode the Ephrin receptor B4 (EPHB4) and the p120 Ras GTPase-activating protein (RASA1) that cause increased activation of the Ras mitogen-activated protein kinase (MAPK) signaling pathway in EC result in vascular dysfunction as a consequence of impaired export of collagen IV. To understand the pathogenesis of collagen IV-related vascular diseases and phenotypes it is necessary to identify at which times collagen IV is actively synthesized by EC. For this purpose, we used CRISPR/Cas9 targeting in mice to include immediately after the terminal Col4a1 codon a sequence that specifies a P2A peptide followed by enhanced green fluorescent protein (eGFP). Analysis of eGFP expression in Col4a1-P2A-eGFP mice revealed active embryonic EC synthesis of collagen IV alpha 1 through mid to late gestation followed by a sharp decline before birth. These results provide a contextual framework for understanding the basis for the varied vascular abnormalities resulting from perturbation of EC expression and export of functional collagen IV.


Asunto(s)
Colágeno Tipo IV , Células Endoteliales , Humanos , Femenino , Embarazo , Células Endoteliales/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Proteínas Fluorescentes Verdes , Desarrollo Embrionario , Proteína Activadora de GTPasa p120/genética , Proteína Activadora de GTPasa p120/metabolismo
18.
Proteomics ; : e2300650, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018239

RESUMEN

Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.

19.
Proteomics ; 24(3-4): e2300135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37312401

RESUMEN

Native mass spectrometry is a rapidly emerging technique for fast and sensitive structural analysis of protein constructs, maintaining the protein higher order structure. The coupling with electromigration separation techniques under native conditions enables the characterization of proteoforms and highly complex protein mixtures. In this review, we present an overview of current native CE-MS technology. First, the status of native separation conditions is described for capillary zone electrophoresis (CZE), affinity capillary electrophoresis (ACE), and capillary isoelectric focusing (CIEF), as well as their chip-based formats, including essential parameters such as electrolyte composition and capillary coatings. Further, conditions required for native ESI-MS of (large) protein constructs, including instrumental parameters of QTOF and Orbitrap systems, as well as requirements for native CE-MS interfacing are presented. On this basis, methods and applications of the different modes of native CE-MS are summarized and discussed in the context of biological, medical, and biopharmaceutical questions. Finally, key achievements are highlighted and concluded, while remaining challenges are pointed out.


Asunto(s)
Electroforesis Capilar , Proteínas , Espectrometría de Masas/métodos , Proteínas/análisis , Electroforesis Capilar/métodos
20.
Proteomics ; 24(3-4): e2200389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37963825

RESUMEN

Characterization of histone proteoforms with various post-translational modifications (PTMs) is critical for a better understanding of functions of histone proteoforms in epigenetic control of gene expression. Mass spectrometry (MS)-based top-down proteomics (TDP) is a valuable approach for delineating histone proteoforms because it can provide us with a bird's-eye view of histone proteoforms carrying diverse combinations of PTMs. Here, we present the first example of coupling capillary zone electrophoresis (CZE), ion mobility spectrometry (IMS), and MS for online multi-dimensional separations of histone proteoforms. Our CZE-high-field asymmetric waveform IMS (FAIMS)-MS/MS platform identified 366 (ProSight PD) and 602 (TopPIC) histone proteoforms from a commercial calf histone sample using a low microgram amount of histone sample as the starting material. CZE-FAIMS-MS/MS improved the number of histone proteoform identifications by about 3 folds compared to CZE-MS/MS alone (without FAIMS). The results indicate that CZE-FAIMS-MS/MS could be a useful tool for comprehensive characterization of histone proteoforms with high sensitivity.


Asunto(s)
Histonas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Movilidad Iónica , Procesamiento Proteico-Postraduccional , Electroforesis Capilar/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA