Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
Más filtros

Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(6): 5894-5908, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921023

RESUMEN

Lung cancer (LC) represents the leading cause of global cancer deaths, with cigarette smoking being considered a major risk factor. Nicotine is a major hazardous compound in cigarette smoke (CS), which stimulates LC progression and non-small cell lung cancer (NSCLC) specifically through activation of the nicotinic acetylcholine receptor (α7nAChR)-mediated cell-signaling pathways and molecular genes involved in proliferation, angiogenesis, and metastasis. Chalcones (CHs) and their derivatives are intermediate plant metabolites involved in flavonol biosynthesis. Isoliquiritigenin (ILTG), licochalcone A-E (LicoA-E), and echinatin (ECH) are the most common natural CHs isolated from the root of Glycyrrhiza (also known as licorice). In vitro and/or vivo experiments have shown that licorice CHs treatment exhibits a range of pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite advances in NSCLC treatment, the mechanisms of licorice CHs in nicotine-induced NSCLC treatment remain unknown. Therefore, the aim of this paper is to review experimental studies through the PubMed/Medline database that reveal the effects of licorice CHs and their potential mechanisms in nicotine-induced NSCLC treatment.

2.
Int Microbiol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819732

RESUMEN

The scarce antifungal arsenal, changes in the susceptibility profile of fungal agents, and lack of adherence to treatment have contributed to the increase of cases of dermatomycoses. In this context, new antimicrobial substances have gained importance. Chalcones are precursors of the flavonoid family that have multiple biological activities, have high tolerability by humans, and easy synthesis. In this study, we evaluated the in vitro antifungal activity, alone and in combination with conventional antifungal drugs, of the VS02-4'ethyl chalcone-derived compound against dermatophytes and Candida spp. Susceptibility testing was carried out by broth microdilution. Experiments for determination of the target of the compound on the fungal cell, time-kill kinetics, and toxicity tests in Galleria mellonella model were also performed. Combinatory effects were evaluated by the checkerboard method. Results showed high activity of the compound VS02-4'ethyl against dermatophytes (MIC of 7.81-31.25 µg/ml). The compound targeted the cell membrane, and the time-kill test showed the compound continues to exert gradual activity after 5 days on dermatophytes, but no significant activity on Candida. Low toxicity was observed at 250 mg/kg. Excellent results were observed in the combinatory test, where VS02-4'ethyl showed synergistic interactions with itraconazole, fluconazole, terbinafine, and griseofulvin, against all isolates tested. Although further investigation is needed, these results revealed the great potential of chalcone-derived compounds against fungal infections for which treatments are long and laborious.

3.
Bioorg Med Chem ; 109: 117778, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870714

RESUMEN

Indole based glycosides belong to the class of pharmacologically active molecules and found in diverse natural compounds. Herein, we report the synthesis of 1,2,3-triazole bridged chirally enriched diverse indole-chalcones based glycohybrids. Three series of glycohybrids were designed and efficiently synthesized using d-glucose, d-galactose and d-mannose derived 1-azido glycosides. The reactions sequence involved were, the synthesis of indole derived chalcones which were formed via Claisen-Schmidt condensation reaction and subsequently N-propargylation which leads to the production of N-propargylated indole-chalcones. The N-propargylated indole-chalcones get transformed into 1,2,3-triazole bridged indole-chalcone based glycohybrids by reacting with 1-azido sugar glycosides under click-chemistry reaction conditions. Further, the biological activity of synthesized glycohybrids (n = 27) was assessed in-vitro against MDA-MB231, MCF-7, MDA-MB453 cancer, and MCF-10A normal cell lines. The selected compounds showed potent anti-oncogenic properties against MCF-7 and MDA-MB231 breast cancer cell line with IC50 values of 1.05 µM and 11.40 µM respectively, with very good selectivity index (SI > 161). The active compounds show better binding affinity as compared to co-crystallized inhibitor 1-(tert-butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) with HCK (PTKs) proteins in molecular docking studies.


Asunto(s)
Antineoplásicos , Chalconas , Ensayos de Selección de Medicamentos Antitumorales , Indoles , Humanos , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Chalconas/química , Chalconas/farmacología , Chalconas/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Glicósidos/química , Glicósidos/síntesis química , Glicósidos/farmacología , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga
4.
Chem Biodivers ; 21(4): e202400077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359316

RESUMEN

New chalcones were synthesized and evaluated to serve as p38-α type of mitogen-activated protein kinase (MAPK) inhibitors. According to the National Cancer Institute, the findings indicated that at a 10 µM dosage, compounds 3a and 6 were the most active among all the compounds examined, with mean growth inhibition% of 94.83 and 58.49, respectively. In 5-dose testing, they showed anticancer activity in the micro-molar range with GI50 in the range of 1.41-46.1 and 2.07-31.3 µM, respectively. Besides, powerful activity, especially against the leukaemia cell lines and good selectivity to cancer cells compared to normal PCS-800-017 with a selectivity index=12.41 and 23.77, respectively. Compounds 3a and 6 inhibited p38α MAPK with IC50 values of 0.1462±0.0063 and 0.4356±0.0189 µM, correspondingly. 3a showed good inhibition for HL-60(TB) cells and induced cell cycle arrest in HL-60(TB) cells at the G2/M phase. Besides, it elevated the total apoptosis by 14.68-fold and increased the caspase-3 level by 3.52-fold compared with doxorubicin, which raised it by 4.30-fold, inducing apoptosis by acting as caspase-dependent inducers. These results suggest that 3a is a promising antiproliferative and p38α MAPK inhibitor, confirmed by molecular docking with high compatibility 3a with the p38α MAPK binding site.


Asunto(s)
Antineoplásicos , Chalconas , Proteína Quinasa 14 Activada por Mitógenos , Humanos , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Chalconas/farmacología , Puntos de Control del Ciclo Celular , Doxorrubicina/farmacología , Inhibidores de Proteínas Quinasas/química , Apoptosis , Estructura Molecular , Proliferación Celular , Antineoplásicos/química , Relación Estructura-Actividad , Línea Celular Tumoral
5.
Chem Biodivers ; : e202400393, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946224

RESUMEN

Flavonoids epitomize structural scaffolds in many biologically active synthetic and natural compounds. They showcase a diverse spectrum of biological activities including anticancer, antidiabetic, antituberculosis, antimalarial, and antibiofilm activities. The antibiofilm activity of a series of new chalcones and flavonols against clinically significant Pseudomonas aeruginosa PAO1 strain was studied. Antivirulence activities were screened by analysing the effect of compounds on the production of virulence factors like pyocyanin, LasA protease, cell surface hydrophobicity, and rhamnolipid. The best ligands towards the quorum sensing proteins LasR, RhlR, and PqsR were recognised using a molecular docking study. The gene expression in P. aeruginosa after treatment with test compounds was evaluated on quorum sensing genes including rhlA, lasB, and pqsE. The antibiofilm potential of chalcones and flavonols was confirmed by the efficient reduction in the production of virulence factors and downregulation of gene expression.

6.
Chem Biodivers ; : e202401021, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954767

RESUMEN

α-Amylase inhibition is vital in controlling diabetic complications. Herein, we have synthesized a hybrid scaffold based on thiazole-chalcone to access α-amylase inhbition. The proposed structures were verified with spectroscopic techniques (UV-vis, FT-IR, 1H-, 13C-NMR, and elemental analysis). The synthesized compounds were evaluated for their α-amylase and antioxidant potential. In vitro hemolytic assay was performed to test biocompatibility of all compounds. Among tested compounds, 4c (IC50= 3.8 µM), 4g (IC50= 14.5 µM), and 4f (IC50= 17.1 µM) were found excellent α-amylase inhibitors. However, none of the tested compounds exhibited significant antioxidant activity. All compounds showed less lysis than Triton X-100, but compounds 4f and 4h had the least lysis at all tested concentrations and were found to be safe for human erythrocytes. Molecular docking study was performed to evaluate the binding interactions of ligands with human pancreatic α-amylase (HPA). The binding score -8.09 to -8.507 kcal/mol revealed strong binding interactions in the ligand-protein complex. The docking results supplemented the observed α-amylase inhibition and hence augment the scaffold to serve as leads for the antidiabetic drug development.

7.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457745

RESUMEN

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Asunto(s)
Antituberculosos , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Triazoles , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Relación Estructura-Actividad , Enterococcus faecalis/efectos de los fármacos , Estructura Molecular , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Chalconas/química , Chalconas/farmacología , Chalconas/síntesis química
8.
Arch Pharm (Weinheim) ; 357(7): e2400081, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548680

RESUMEN

New pyridine-based chalcones 4a-h and pyrazolines 5a-h (N-acetyl), 6a-h (N-phenyl), and 7a-h (N-4-chlorophenyl) were synthesized and evaluated by the National Cancer Institute (NCI) against 60 different human cancer cell lines. Pyrazolines 6a, 6c-h, and 7a-h satisfied the pre-determined threshold inhibition criteria, obtaining that compounds 6c and 6f exhibited high antiproliferative activity, reaching submicromolar GI50 values from 0.38 to 0.45 µM, respectively. Moreover, compound 7g (4-CH3) exhibited the highest cytostatic activity of these series against different cancer cell lines from leukemia, nonsmall cell lung, colon, ovarian, renal, and prostate cancer, with LC50 values ranging from 5.41 to 8.35 µM, showing better cytotoxic activity than doxorubicin. Furthermore, the compounds were tested for antibacterial and antiplasmodial activities. Chalcone 4c was the most active with minimal inhibitory concentration (MIC) = 2 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA), while the pyrazoline 6h showed a MIC = 8 µg/mL against Neisseria gonorrhoeae. For anti-Plasmodium falciparum activity, the chalcones display higher activity with EC50 values ranging from 10.26 to 10.94 µg/mL. Docking studies were conducted against relevant proteins from P. falciparum, exhibiting the minimum binding energy with plasmepsin II. In vivo toxicity assay in Galleria mellonella suggests that most compounds are low or nontoxic.


Asunto(s)
Antibacterianos , Antimaláricos , Antineoplásicos , Chalconas , Pruebas de Sensibilidad Microbiana , Plasmodium falciparum , Pirazoles , Piridinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Línea Celular Tumoral , Relación Estructura-Actividad , Plasmodium falciparum/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Antimaláricos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Animales , Relación Dosis-Respuesta a Droga , Neisseria gonorrhoeae/efectos de los fármacos
9.
Arch Pharm (Weinheim) ; 357(6): e2300319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396284

RESUMEN

Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Pruebas de Sensibilidad Parasitaria , Quinolinas , Trypanosoma brucei rhodesiense , Trypanosoma cruzi , Animales , Ratones , Quinolinas/farmacología , Quinolinas/síntesis química , Quinolinas/química , Humanos , Relación Estructura-Actividad , Leishmania infantum/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Estructura Molecular , Trypanosoma brucei brucei/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Fibroblastos/efectos de los fármacos
10.
Drug Dev Res ; 85(5): e22233, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030842

RESUMEN

Malaria is an intracellular protozoan parasitic disease caused by Plasmodium species with significant morbidity and mortality in endemic regions. The complex lifecycle of the parasite and the emergence of drug-resistant Plasmodium falciparum have hampered the efficacy of current anti-malarial agents. To circumvent this situation, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 26 hybrid compounds containing the three privileged bioactive scaffolds (sulfonamide, chalcone, and nitro group) with synergistic and multitarget action. These three parent scaffolds exhibit divergent activities, such as antibacterial, anti-malarial, anti-fungal, anti-inflammatory, and anticancer. All the synthesised compounds were characterised using various spectroscopic techniques. The in vitro blood-stage inhibitory activity of 26 hybrid compounds was evaluated against mixed-stage culture (asynchronize) of human malarial parasite P. falciparum, Pf 3D7 at different concentrations ranging from 25.0 µg/mL to 0.78 µg/mL using SYBR 1 green assay, with IC50 values determined after 48 h of treatment based on the drug-response curves. Two potent compounds (11 and 10), with 2-Br and 2,6-diCl substitutions, showed pronounced activity with IC50 values of 5.4 µg/mL and 5.6 µg/mL, whereas others displayed varied activity with IC50 values ranging from 7.0 µg/mL to 22.0 µg/mL. Both 11 and 10 showed greater susceptibility towards mature-stage trophozoites than ring-stage parasites. The hemolytic and in vitro cytotoxicity assays revealed that compounds 11 and 10 did not cause any toxic effects on host red blood cells (uninfected), human-derived Mo7e cells, and murine-derived BA/F3 cells. The in vitro observations are consistent with the in silico studies using P. falciparum-dihydrofolate reductase, where 11 and 10 showed a binding affinity of -10.4 Kcal/mol. This is the first report of the hybrid scaffold, 4-nitrobenzenesulfonamide chalcones, demonstrating its potential as an anti-plasmodial agent.


Asunto(s)
Antimaláricos , Chalconas , Diseño de Fármacos , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Humanos , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Simulación por Computador , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo
11.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000255

RESUMEN

4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,ß-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.


Asunto(s)
Chalconas , Disolventes Eutécticos Profundos , Oxidación-Reducción , Rhodotorula , Rhodotorula/metabolismo , Chalconas/metabolismo , Chalconas/química , Disolventes Eutécticos Profundos/metabolismo , Disolventes Eutécticos Profundos/química , Yarrowia/metabolismo , Levaduras/metabolismo , Temperatura , Biocatálisis
12.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612435

RESUMEN

This study presents the synthesis of four series of novel hybrid chalcones (20,21)a-g and (23,24)a-g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28-33)a-g and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,d-g, 24a-g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e-g, 33a,b,e-g exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 µM and LC50 values in the range of 4.09 µM to >100 µM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25-62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 µg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe.


Asunto(s)
Chalconas , Isocianatos , Mycobacterium tuberculosis , Chalconas/farmacología , Antifúngicos/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Azepinas/farmacología , Fluorouracilo , Neisseria gonorrhoeae , Triazinas/farmacología
13.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062784

RESUMEN

Ovarian cancer ranks among the most severe forms of cancer affecting the female reproductive organs, posing a significant clinical challenge primarily due to the development of resistance to conventional therapies. This study investigated the effects of the chalcone derivative 1C on sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cell lines. Our findings revealed that 1C suppressed cell viability, induced cell cycle arrest at the G2/M phase, and triggered apoptosis in both cell lines. These effects are closely associated with generating reactive oxygen species (ROS). Mechanistically, 1C induced DNA damage, modulated the activity of p21, PCNA, and phosphorylation of Rb and Bad proteins, as well as cleaved PARP. Moreover, it modulated Akt, Erk1/2, and NF-κB signaling pathways. Interestingly, we observed differential effects of 1C on Nrf2 levels between sensitive and resistant cells. While 1C increased Nrf2 levels in sensitive cells after 12 h and decreased them after 48 h, the opposite effect was observed in resistant cells. Notably, most of these effects were suppressed by the potent antioxidant N-acetylcysteine (NAC), underscoring the crucial role of ROS in 1C-induced antiproliferative activity. Moreover, we suggest that modulation of Nrf2 levels can, at least partially, contribute to the antiproliferative effect of chalcone 1C.


Asunto(s)
Apoptosis , Chalconas , Resistencia a Antineoplásicos , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Ováricas , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Femenino , Apoptosis/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Chalconas/farmacología , Antineoplásicos/farmacología , Chalcona/farmacología , Chalcona/análogos & derivados , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Daño del ADN/efectos de los fármacos
14.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675640

RESUMEN

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Asunto(s)
Chalconas , Plasmodium falciparum , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Humanos , Línea Celular Tumoral , Plasmodium falciparum/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/crecimiento & desarrollo , Antimaláricos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estructura Molecular
15.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792109

RESUMEN

This review article is a comprehensive and current overview on chalcones, covering their sources, identification methods, and properties with a particular focus on their applications in the agricultural sector. The widespread use of synthetic pesticides has not only led to increased resistance among weeds and pests, resulting in economic losses, but it has also raised significant health concerns due to the overuse of these chemicals. In line with the European Green Deal 2030 and its Farm to Fork strategy, there is a targeted 50% reduction in the use of chemical pesticides by 2030, emphasizing a shift towards natural alternatives that are more environmentally sustainable and help in the restoration of natural resources. Chalcones and their derivatives, with their herbicidal, fungicidal, bactericidal, and antiviral properties, appear to be ideal candidates. These naturally occurring compounds have been recognized for their beneficial health effects for many years and have applications across multiple areas. This review not only complements the previous literature on the agricultural use of chalcones but also provides updates and introduces methods of detection such as chromatography and MALDI technique.


Asunto(s)
Agricultura , Chalconas , Chalconas/química , Chalconas/farmacología , Plaguicidas/química , Plaguicidas/análisis , Plaguicidas/farmacología , Herbicidas/química , Herbicidas/farmacología
16.
Chemistry ; 29(7): e202203178, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36344439

RESUMEN

Three groups of chalcone derivatives and their analogues involving halogen atoms (X=F, Cl, Br) have been synthesized. Firstly, the nearly planar acyclic chalcone derivatives were inclined to undergo photo-induced stereospecific [2+2] cycloaddition, which triggered the crystals to exhibit macroscopic motions of bending or cracking. In particular, the single-crystal-to-single-crystal transformation happened upon UV irradiation of the crystals, which was helpful for the understanding photomechanical effects. Cyclic 3,4-dihydronaphthalene-based chalcone analogues possess a more twisted conformation, and they tend to undergo trans-cis isomerization. No photomechanical effect was observed for the crystals of the cyclic chalcone analogues due to the lower isomerization rate. The twist degree of chroman-based molecules was in between of the first two, [2+2] cycloaddition and trans-cis isomerization simultaneously took place in crystals. Photo-induced bending and twisting were observed for the crystals of chroman-based chalcone analogues. Therefore, the differences in molecular dihedral angles in α,ß-unsaturated ketones were responsible for their photochemical characters and in turn to tune the photomechanical effects. In this work, a bridge between the molecular structures and solid-state photochemical reactions triggered photomechanical crystals is built.

17.
Neurochem Res ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814132

RESUMEN

Chalcones (trans-1,3-diphenyl-2-propen-1-ones) form simple chemical structures that act as precursors for the biogenesis of flavonoids. These are distributed in plants and have two aromatic or heteroaromatic rings connected by a three-carbon α, ß-unsaturated carbonyl group. Considering the importance of chalcones as monoamine oxidase and acetylcholinesterase inhibitors, the study was designed as a comprehensive and systematic analysis to evaluate the pharmacological activities leading to the formation of drug molecules against Alzheimer's disease (AD). Based on our previous research, 11 indolyl chalcones (IC1-IC11) were synthesised and investigated for MAO-B inhibitory activity. The inhibitory potential was evaluated based on binding and reversibility studies using purified enzymes. The active and most promising molecule, (2E)-3-(4-bromophenyl)-1-(1H-indol-3-yl) prop-2-en-1-one (IC9), also found predominant acetylcholinesterase inhibition and hence it was found dual acting in vitro. Based on this, the molecule IC9 was further subjected to cell line studies to further explore its role as a neuroprotective agent against neuronal degeneration, one of the main contributing parameters related to AD.

18.
Arch Microbiol ; 205(6): 246, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209304

RESUMEN

Chalcones have a variety of cellular protective and regulatory functions that may have therapeutic potential in many diseases. In addition, they are considered to affect key metabolic processes in pathogens. Nevertheless, our current knowledge of the action of these compounds against fungal cell is scarce. Therefore, in this study, various substituted chalcone Schiff bases were investigated to reveal their cellular targets within the yeasts Saccharomyces cerevisiae and Candida albicans. First, their antifungal activities were determined via minimum inhibitory concentration method. Surprisingly, parent chalcone Schiff bases showed little or no antifungal activity, while the nitro-substituted derivatives were found to be highly active against yeast cells. Next, we set out to determine the cellular target of active compounds and tested the involvement of the cell wall and cell membrane in this process. Our conductivity assay confirmed that the yeast cell membrane was compromised, and that ion leakage occurred upon treatment with nitro-substituted chalcone Schiff bases. Therefore, the cell membrane came to the fore as a possible target for the active chalcone derivatives. We also showed that exogenous ergosterol added to the growth medium reduced the inhibitory effect of chalcones. Our findings open up new possibilities for the design of future antimicrobial agents based on this appealing backbone structure.


Asunto(s)
Chalcona , Chalconas , Candida albicans , Chalcona/farmacología , Saccharomyces cerevisiae , Chalconas/farmacología , Chalconas/química , Bases de Schiff/farmacología , Bases de Schiff/química , Antifúngicos/farmacología , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , Membrana Celular
19.
Arch Microbiol ; 206(1): 34, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133819

RESUMEN

Fungal infections can be serious or life threatening in severe cases, and the need to discover and find novel antifungal agents persists. Chalcones are plant-derived aromatic compounds that have been appealing synthons for pharmaceutical industry as they have good anticancer, antibacterial, antifungal and anti-inflammatory properties. Although there are few structure-activity relationship studies on chalcones, studies that link the structural features of these compounds to their mode of action are scant. Thus, in this study, we aim to clarify the relationship between chalcone derivatives and their cellular target within the yeast cell Saccharomyces cerevisiae. We observed that some chalcone compounds lead to disruption of cell membrane and cause ion leakage out of the cell. Moreover, chalcones alter the biochemical composition of yeast cells detectable by FTIR spectroscopy and bind to the DNA as shown by our titration experiments based on UV-Vis absorbance spectroscopy. Thus, their interaction with the DNA may be the major impact of these compounds on yeast cells.


Asunto(s)
Chalcona , Chalconas , Chalcona/farmacología , Chalconas/farmacología , Chalconas/química , Saccharomyces cerevisiae , Antifúngicos/farmacología , Antifúngicos/química , Membrana Celular , Relación Estructura-Actividad , ADN
20.
Arch Microbiol ; 205(2): 57, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609727

RESUMEN

Fungal deterioration is one of the major factors that significantly contribute to mummy cartonnage damage. Isolation and molecular identification of thirteen fungal species contributing to the deterioration of ancient Egyptian mummy cartonnage located in El-Lahun regions, Fayoum government, Egypt was performed. The most dominant deteriorated fungal species are Aspergillus flavus (25.70%), Aspergillus terreus (16.76%), followed by A. niger (13.97%). A newly synthesized series of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcone derivatives were synthesized and evaluated for their antifungal activities in vitro against the isolated deteriorated fungal species (Aspergillus flavus, A. niger, A. terreus, Athelia bombacina, Aureobasidium iranianum, Byssochlamys spectabilis, Cladosporium cladosporioides, C. ramotenellum, Penicillium crustosum, P. polonicum, Talaromyces atroroseus, T. minioluteus and T. purpureogenus). The most efficient chalcone derivatives are new chalcone derivative numbers 9 with minimum inhibitory concentration (MIC) ranging from 1 to 3 mg/mL followed by chalcone derivatives number 5 with MIC ranging from 1 to 4 mg/mL.


Asunto(s)
Chalconas , Momias , Egipto , Antifúngicos/farmacología , Aspergillus flavus/genética , Isoquinolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA