Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.124
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Comput Chem ; 45(8): 461-475, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37950586

RESUMEN

A theoretical investigation on the cooperativity of a series of binary, ternary, and quaternary complexes interconnected by pnicogen bonds has been conducted using calculations at the M06-2X/aug-cc-pVTZ level of density functional theory. By measuring changes in the molecular electrostatic potential (MESP) at the nucleus of interacting atoms in all of the complexes, it is possible to quantify the substantial reorganization of the electron density triggered by the formation of pnicogen bonds. The positive change in MESP, indicating a loss of electron density from the donor molecule in a dimer, facilitates the acceptance of electron density from a third molecule, resulting in the formation of a ternary complex with a stronger pnicogen bond compared to the one present in the binary complex. Similarly, the acceptor molecule in a dimer with a negative change in MESP showed an enhanced tendency to donate electron density to an electron-deficient third molecule. The MESP analysis provided valuable insights into the donor/acceptor characteristics of pnicogen bonds within the quaternary complexes. The proposed MESP hypotheses are consistent with the positive cooperativity observed in the pnicogen-bonded clusters. To quantify the changes in MESP, both at the donor atom (ΔVdonor ) and the acceptor atom (ΔVacceptor ), for all pnicogen bonds in the cluster, the total change in MESP (ΔΔVn ) was measured as ΔΔVn = ∑(ΔVdonor )-∑(ΔVacceptor ). Remarkably, ΔΔVn exhibited a strong linear relationship with the sum of the bond energies of the pnicogen bonds in the cluster. This establishes the MESP analysis as a robust approach for understanding the strength and cooperative behavior of pnicogen-bonded clusters. Additionally, the MESP features provided clear evidence of pnicogen bond formation, further supporting the reliability of this approach.

2.
Small ; : e2405887, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248647

RESUMEN

Covalent organic frameworks (COFs) have emerged as one of the most studied photocatalysts owing to their adjustable structure and bandgaps. However, there is limited research on regulating the light-harvesting capabilities of acceptor building blocks in donor-acceptor (D-A) isomer COFs with different bond orientations. This investigation is crucial for elucidating the structure-property-performance relationship of COF photocatalysts. Herein, a series of D-A isostructural COFs are synthesized with different imine bond orientations using benzothiadiazole and its derivatives-based organic building units. Extended light absorption is achieved in COFs with acceptor groups that have strong electron-withdrawing capacities, although this resulted a decreased hydrogen generation efficiency. Photocatalytic experiments indicated that dialdehyde benzothiadiazole-based COFs, HIAM-0015, exhibit the highest hydrogen generation rate (17.99 mmol g-1 h-1), which is 15 times higher than its isomer. The excellent photocatalytic performance of HIAM-0015 can be attributed to its fast charge separation and migration. This work provides insights into the rational design and synthesis of D-A COFs to achieve efficient photocatalytic activity.

3.
Small ; : e2406723, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358942

RESUMEN

Conjugated microporous polymers (CMPs) are an important class of organic materials with several useful features like, inherent nanoscale porosity, large specific surface area and semiconducting properties, which are very demanding for various sustainable applications. Carbazole building blocks are extensively used in designing photocatalysts due to easy electron donation and hole transportation. In the current study, a new CMP material CBZ-CMP containing carbazole unit used for photocatalytic C═N coupling reaction under blue light irradiation is designed. The CBZ-CMP framework is made through the polycondensation of 4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl using FeCl3 as a catalyst. The CBZ-CMP shows very high BET surface area of 1536 m2 g-1 together with unimodal porosity (ca. 1.7 nm supermicropore), nanowire-like particle morphology (16-18 nm diameter), and low band gap property. The bi-phenyl moiety functions as the electron accepting center and the carbazole unit acts as the donor center, which accounts for the low band gap energy of CBZ-CMP. This nanoporous semiconducting CBZ-CMP material for photocatalytic benzylamine coupling reaction is explored, where it shows good conversion together with high selectivity under mild reaction conditions. This study offers simple method of preparation of a D-A-D-based porous photocatalyst for sustainable synthesis of value-added organics.

4.
Small ; 20(31): e2311798, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461518

RESUMEN

The photocatalytic environmental decontamination ability of carbon nitride (g-C3N4, CN) typically suffers from their inherent structural defects, causing rapid recombination of photogenerated carriers. Conjugating CN with tailored donor-acceptor (D-A) units to counteract this problem through electronic restructuring becomes a feasible strategy, where confirmation by density functional theory (DFT) calculations becomes indispensable. Herein, DFT is employed to predirect the copolymerization modification of CN by benzene derivatives, screening benzaldehyde as the optimal electron-donating candidate for the construction of reoriented intramolecular charge transfer path. Experimental characterization and testing corroborate the formation of a narrowed bandgap as well as high photoinduced carrier separation. Consequently, the optimal BzCN-2 exhibited superior photocatalytic capacity in application for tetracycline hydrochloride degradation, with 3.73 times higher than that of CN. Besides, the BzCN-2-based photocatalytic system is determined to have a toxicity-mitigating effect on TC removal via T.E.S.T and prefers the removal of dissociable TC2- species under partial alkalinity. This work provides insight into DFT guidance for the design of D-A conjugated polymer and its application scenarios in photocatalytic decontamination.

5.
Small ; 20(34): e2400619, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593311

RESUMEN

The challenges of Lithium-carbon dioxide (Li-CO2) batteries for ensuring long-term cycling stability arise from the thermodynamically stable and electrically insulating discharge products (e.g., Li2CO3), which primarily rely on their interaction with the active materials. To achieve the optimized intermediates, the bifunctional electron donor-acceptor (D-A) pairs are proposed in cathode design to adjust such interactions in the case of B-O pairs. The inclusion of BC2O sites allows for the optimized redistribution of electrons via p-π conjugation. The as-obtained DO-AB pairs endow the enhanced interactions with Li+, CO2, and various intermediates, accompanied by the adjustable growth mode of Li2CO3. The shift from solvation-mediated mode into surface absorption mode in turn manipulates the morphology and decomposition kinetics of Li2CO3. Therefore, the corresponding Li-CO2 battery got twofold improved in both the capacity and reversibility. The cycling prolongs exceed 1300 h and well operates at a wide temperature range (20-50 °C) and different folding angles (0-180°). Such a strategy of introducing electron donor-acceptor pairs provides a distinct direction to optimize the lifetime of Li-CO2 battery from local structure regulation at the atomic scale, further inspiring in-depth understandings for developing electrochemical energy storage and carbon capture technologies.

6.
Small ; 20(35): e2310028, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38651514

RESUMEN

In this study, two novel donor-acceptor (D-A) copolymers are designed and synthesized, DTBT-2T and DTBT-2T2F with 2,2'-bithiophene or 3,3'-difluoro-2,2'-bithiophene as the donor unit and dithienobenzothiadiazole as the acceptor unit, and used them as donor materials in non-fullerene organic solar cells (OSCs). Due to enhanced planarity of polymer chains resulted by the intramolecular F···S noncovalent interactions, the incorporation of 3,3'-difluoro-2,2'-bithiophene unit instead of 2,2'-bithiophene into the polymers can enhance their molecular packing, crystallinity and hole mobility. The DTBT-2T:L8-BO based binary OSCs deliver a power conversion efficiency (PCE) of only 9.71% with a Voc of 0.78 V, a Jsc of 20.69 mA cm-2 , and an FF of 59.67%. Moreover, the introduction of fluoro atoms can lower the highest occupied molecular orbital levels. As a result, DTBT-2T2F:L8-BO based single-junction binary OSCs exhibited less recombination loss, more balanced charge mobility, and more favorable morphology, resulting in an impressive PCE of 17.03% with a higher Voc of 0.89 V, a Jsc of 25.40 mA cm-2, and an FF of 75.74%. These results indicate that 3,3'-difluoro-2,2'-bithiophene unit can be used as an effective building block to synthesize high performance polymer donor materials. This work greatly expands the selection range of donor units for constructing high-performance polymers.

7.
Small ; 20(30): e2311816, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396322

RESUMEN

Converting carbon dioxide (CO2) into high-value chemicals using solar energy remains a formidable challenge. In this study, the CSC@PM6:IDT6CN-M:IDT8CN-M non-fullerene small-molecule organic semiconductor is designed with highly efficient electron donor-acceptor (D-A) interface for photocatalytic reduction of CO2. Atomic Force Microscope and Transmission Electron Microscope images confirmed the formation of an interpenetrating fibrillar network after combination of donor and acceptor. The CO yield from the CSC@PM6:IDT6CN-M:IDT8CN-M reached 1346 µmol g-1 h-1, surpassing those of numerous reported inorganic photocatalysts. The D-A structure effectively facilitated charge separation to enable electrons transfer from the PM6 to IDT6CN-M:IDT8CN-M. Meanwhile, attributing to the dipole moments of the strong intermolecular interactions between IDT6CN-M and IDT8CN-M, the intermolecular forces are enhanced, and laminar stacking and π-π stacking are strengthened, thereby reinforcing energy transfer between acceptor molecules and significantly enhanced charge separation. Moreover, the strong internal electric field in the D-A interface enhanced the excited state lifetime of PM6:IDT6CN-M:IDT8CN-M. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis demonstrated that carboxylate (COOH*) is the predominant intermediate during CO2 reduction, and possible pathways of CO2 reduction to CO are deduced. This study presents a novel approach for designing materials with D-A interface to achieve high photocatalytic activity.

8.
Small ; : e2405907, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148194

RESUMEN

Photocatalytic H2O2 production is a green and sustainable route, but far from meeting the increasing demands of industrialization due to the rapid recombination of the photogenerated charge carriers and the sluggish reaction kinetics. Effective strategies for precisely regulating the photogenerated carrier behavior and catalytic activity to construct high-performance photocatalysts are urgently needed. Herein, a nitrogen-site engineering strategy, implying elaborately tuning the species and densities of nitrogen atoms, is applied for H2O2 photogeneration performance regulation. Different nitrogen heterocycles, such as pyridine, pyrimidine, and triazine units, are polymerized with trithiophene units, and five covalent organic frameworks (COFs) with distinct nitrogen species and densities on the skeletons are obtained. Fascinatingly, they photocatalyzed H2O2 production via dominated two-electron O2 reduction processes, including O2-O2 •‒-H2O2 and O2-O2 •‒-O2 1-H2O2 dual pathways. Just in the air and pure water, the multicomponent TTA-TF-COF with the maximum nitrogen densities triazine nitrogen densities exhibited the highest H2O2 production rate of 3343 µmol g-1 h-1, higher than most of other reported COFs. The theoretical calculation revealed the higher activity is due to the easy formation of O2 •‒ and O2 1 in different catalytic process. This study gives a new insight into designing photocatalysis at atomic level.

9.
Chembiochem ; : e202400273, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924297

RESUMEN

A series of D-p-A indole-containing fluorescent probes were developed followed by an investigation of their photophysical properties and compounds' suitability for subcellular imaging in living cells. We demonstrate that the preference for mitochondrial localization was lost when morpholine was substituted, resulting in the accumulation of the molecule in the lysosomes. However, interestingly, the presence of a nitro group led to their localization within the lipid droplets despite the presence of the morpholine pendant. We also showcase the probes' sensitivity to pH, the influence of added chloroquine, and the temperature response on the changes in fluorescence intensity within lysosomes. The design of the probes with strong intramolecular charge transfer and substantial Stokes shift could facilitate extensive application in various cellular lysosomal models and contribute to a better understanding of the mechanisms involved in stimuli-responsive diseases.

10.
Chemistry ; 30(2): e202303067, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37902606

RESUMEN

A new carbazole-substituted bisterpyridine with pronounced delayed fluorescence is presented. While the molecular donor-acceptor-donor design suggests the origin of this to be thermally activated delayed fluorescence (TADF), results from various photophysical characterizations, OLED characteristics, temperature-dependent NMR spectroscopy, and DFT calculations all point against the involvement of triplet states. The molecule exhibits blue emission at about 440 nm with two or more fast decay channels in the lower nanosecond range in both solution and thin films. The delayed emission is proposed to be caused by rotational vibrational modes. We suggest that these results are generally applicable, especially for more complex molecules, and should be considered as alternative or competitive emissive relaxation pathways in the field of organic light emitting materials.

11.
Chemistry ; 30(5): e202303490, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930279

RESUMEN

Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor-acceptor chromophores were obtained by incorporating fluorenone or 2-(9H-fluoren-9-ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late-stage functionalization of the fluorenone-based rings by high-yielding Knoevenagel condensations. The structures were confirmed by X-ray crystallographic analyses, which revealed that replacing a phenylene for a fused-ring-system acceptor introduces additional strain. The donor-acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi-redox systems undergoing reversible or quasi-reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units.

12.
Chemistry ; 30(9): e202302365, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37798939

RESUMEN

The annulation of a methylenecyclopropane with acyl cyanoalkenes by using DABCO or quinuclidine as a catalyst to give 2,3-dihydofurans has been developed. A stoichiometric amount of the Lewis bases promoted the isomerization of 2,3-dihydrofurans to furans. 1 H NMR spectra of the reaction in situ revealed that the methylenecyclopropane is opened by the Lewis base to form a reaction intermediate that is added to the cyanoalkenes.

13.
Chemistry ; 30(53): e202401349, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-38970416

RESUMEN

Two star-shaped mesogens with a (meso-tetraphenylporphinato) zinc (II) core and bithiophene conjugated arms with 3,4,5-trisdodecyloxyphenyl periphery were synthesized. One of these molecules was decorated with four fullerenes via an aliphatic spacer. This is the sterically overcrowded compound with an octapodal morphology. The other star lacks the fullerenes and provides free space between the conjugated arms. This mesogen does not aggregate in solution, but in solid state it forms a hexagonal columnar and a highly ordered oblique helical columnar phase, while the octopus molecule assembles in an amorphous solid. Photophysical studies of the octapodal compound in solution and the solid thin film reveal the formation of J-type aggregates, in which the interaction between donors (porphyrin) and acceptors (fullerene) dominates leading to absorption bands in the NIR region of the spectra. The mixture of both compounds results in a self-assembly which is called the Click procedure. Fullerenes of the octopus nanosegregate in the pockets of the star mesogens generating hexagonal columnar structures with a regular stacking along the columnar axis. Thus providing free space is a tool to control the competition between supramolecular interactions and nanosegregation. Such liquid-crystalline donor-acceptor structures may play a role in future LC photovoltaic applications.

14.
Chemistry ; 30(8): e202303120, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37941296

RESUMEN

Organic ferroelectric (FE) materials, though known for more than a century, are yet to reach close to the benchmark of inorganic or hybrid materials in terms of the magnitude of polarization. Amongst the different classes of organic systems, donor (D)-acceptor (A) charge-transfer (CT) complexes are recognized as promising for ferroelectricity owing to their neutral-to-ionic phase transition at low temperature. This review presents an overview of different supramolecular D-A systems that have been explored for FE phase transitions. The discussion begins with a general introduction of ferroelectricity and its different associated parameters. Then it moves on to show early examples of CT cocrystals that have shown FE properties at sub-ambient temperature. Subsequently, recent developments in the field of room temperature (RT) ferroelectricity, exhibited by H-bond-stabilized lock-arm supramolecular-ordering (LASO) in D-A co-crystals or other FE CT-crystals devoid of neutral-ionic phase transition are discussed. Then the discussion moves on to emerging reports on other D-A soft materials such as gel and foldable polymers; finally it shows very recent developments in ferroelectricity in supramolecular assemblies of single-component dipolar or ambipolar π-systems, exhibiting intra-molecular charge transfer. The effects of structural nuances such as H-bonding, balanced charge transfer and chirality on the observed ferroelectricity is described with the available examples. Finally, piezoelectricity in recently reported ambipolar ADA-type systems are discussed to highlight the future potential of these soft materials in micropower energy harvesting.

15.
Chemistry ; 30(4): e202302861, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38015005

RESUMEN

Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.

16.
Chemistry ; 30(22): e202304124, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38380885

RESUMEN

Two units of highly stable luminescent triarylmethyl radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM), were bridged by p-phenylene linker. The photoluminescence quantum yield (PLQY) of PyBTM-PhPyBTM was at most 0.4 % in various organic solvents. Adding two mesityl groups on the terminals did not improve the PLQY. In the MesPyBTM-PhPyBTM-Mes, the mesityl group did not worked as an electron donor unlike the previously reported monoradical MesPyBTM. However, adding two n-hexyl groups on the bridging p-phenylene did greatly improve it, and the PLQY of the PyBTM-(Hex2Ph)PyBTM was 7 % in dichloromethane and acetone, and 12 % in poly(methyl methacrylate) (PMMA) film. Twisting p-phenylene linker by hexyl groups hindered the π-conjugation and suppressed the non-radiative decay of the excited state.

17.
Chemistry ; 30(51): e202401959, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38975973

RESUMEN

Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000 nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.

18.
Chemistry ; 30(52): e202402196, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39034289

RESUMEN

In the realm of solar energy utilization, there is a growing focus on designing and implementing effective photocatalytic systems, for the conversion of solar energy into valuable chemical fuels. The potential of Covalent Organic Polymers (COPs) as photocatalysts for visible-light-driven organic transformation has been widely investigated, positioning them as promising candidates in this field. In the design of COPs, introducing a donor-acceptor arrangement facilitates the transfer of electrons from the donor to the acceptor, creating a charge transfer complex and leading to enhanced conductivity and improved charge separation. Here we present a novel hydrazone-linked covalent organic polymer ETBC-PyHz containing TPE donor and pyridine acceptor. Utilizing this, an efficient method has been developed for an oxidative cross-coupling reaction involving C-S bond formation. This process involves arylhydrazines and arenethiols, and results in the production of unsymmetrical diaryl sulfides via the formation of aryl and thioarene radicals. This conversion holds significant importance because the byproducts produced during the process are nitrogen and water, making it environmentally benign.

19.
Chemistry ; 30(27): e202303799, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38319002

RESUMEN

A series of near-IR absorbing 2,6-diarylated BF2-chelated aza-boron-dipyrromethenes (aza-BDPs) derivatives bearing different electron donors (benzene, naphthalene, phenanthrene, phenothiazine and carbazole) were designed and synthesized. The effect of different electron donor substitutions on the photophysical properties was studied by steady-state UV-vis absorption and fluorescence spectra, electrochemical, time-resolved nanosecond transient absorption (ns-TA) spectroscopy and theoretical computations. The UV-vis absorption spectra of AzaBDP-PTZ and AzaBDP-CAR (λabs=710 nm in toluene) showed a bathochromic absorption profile compared with the reference AzaBDP-Ph (λabs=685 nm in toluene), indicating the non-negligible electronic interaction at the ground state between donor and acceptor moieties. Moreover, the fluorescence is almost completely quenched for AzaBDP-PTZ/AzaBDP-CAR (fluorescence quantum yield, ΦF=0.2-0.7 % in toluene) as compared with the AzaBDP-Ph (ΦF=27 % in toluene). However, the apparent intersystem crossing ability of these compounds is poor, based on the singlet oxygen quantum yield (ΦΔ=0.3-1.5 %). The ns-TA spectral study showed typical Bodipy localized triplet state transient features, short-lived excited triplet state for AzaBDP-Ph (τT=53.2 µs) versus significantly long-lived triplet state for AzaBDP-CAR (τT=114 µs) was observed under deaerated experimental conditions. These triplet state lifetimes are much longer than that obtained with diiodoAzaBDP (intramolecular heavy atom effect, τT=1.5~7.2 µs). These information are useful for molecular structure design of triplet photosensitizers, for which longer triplet state lifetimes are usually desired. Theoretical computations displayed that the triplet state is mainly localized on the AzaBDP core, moreover, it was found that the HOMO/LUMO energy gap decreased after introducing donor moieties to the skeleton as compared with the reference.

20.
Chemistry ; 30(30): e202400621, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38536207

RESUMEN

Donor-Acceptor Stenhouse Adduct (DASA), a class of push-pull negative photochrome, has received large interest lately owing to its versatile synthesis, modularity and excellent photoswitching in solutions. From a technological perspective, it is imperative for this class of photoswitches to work robustly in solid state, e. g. thin films. We feature a molecular framework for the optimized design of DASAs by introducing a new thioindoline donor (D3) and assessing its performance against known 2nd generation indoline-based donors. The systematic structure-function investigations suggest that to achieve robust reversible photoswitching, a ground state with low charge separation is desired. DASAs with stronger electron donors and a larger charge separation in the ground state result in a low population of the photothermalstationary state (PTSS) and reduced photostability. The DASA with thioindoline donor (D3A3) seems to be a special case among the donor series as it causes a red shift (ca. 15 nm), however with less polarization of the ground state and marginally better photostability as compared to the unsubstituted 2-methyl indoline (D1A3). We also emphasize the consideration of the key additional factors that can modulate the red-light photoswitching properties of DASA chromophores in polymer thin films, which might not be dominant in homogenous solution state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA