Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(4): 3460-3469, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38666947

RESUMEN

Recurrent pregnancy loss (RPL) affects around 2% of women of reproductive age. Primary RPL is defined by ≥2 pregnancy losses and no normal birth delivery. In secondary RPL, the losses are after a normal pregnancy and delivery. Most cases have no clear aetiology, although primary cases are the most complex. Several gene single nucleotide polymorphisms (SNPs) have been associated with RPL. The frequency of some SNPs is increased in women suffering from RLP from Asian or Caucasian races; however, in admixed populations, the information on possible genetic links is scarce and contradictory. This study aimed to assess the frequency of two SNPs present in two different enzymes involved in medical conditions observed during pregnancy. It is a case-control study. Microsomal epoxy hydrolase (mEPH) is involved in detoxifying xenobiotics, is present in the ovaries, and is hormonally regulated. The endothelial nitric oxide synthase (NOS3) that forms nitric is involved in vascular tone. Two SNPs, rs1051740 (mEPH) and rs1799983 (NOS3), were assessed. The study included 50 controls and 63 primary RPL patients. The frequency of mutated alleles in both SNPs was significantly higher in patients (p < 0.05). Double-mutated homozygotes were encountered only in RPL patients (p < 0.05). Genetic polymorphisms rs1051740 and rs1799983 may be involved in primary RPL in the Venezuelan admix population. Genetic studies could provide crucial information on the aetiology of primary RPL.

2.
Prostaglandins Other Lipid Mediat ; 165: 106717, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36787830

RESUMEN

PURPOSE: The study aimed to examine if the polymorphism of the endothelial nitric oxide synthase (eNOS) gene variable number of tandem repeats (VNTR) and the serum NO levels are associated with CAD. MATERIALS/METHODS: Case-control study, 70 CAD and 30 control subjects were enrolled. The eNOS gene polymorphism was measured by polymerase chain reaction-agarose gel electrophoresis and the serum NO was assessed by using an ELISA plate and reader covering 540 nm. RESULTS: Uncovering the area under curve (AUC) for serum NO, which was (0.6821), indicating that NO seemed to be a critical prognostic biomarker of CAD; also, glucose, serum creatinine and total bilirubin proved to be significant predictors of CAD with AUC (0.6793, 0.6717 and 0.6662) respectively. Furthermore, higher serum NO levels were associated with the eNOS (ab) genotype. Revealing the intron (a) allele was protective against CAD. Moreover, diminished levels of serum NO in CAD groups compared to controls (P < 0.05). Additionally, Multiple logistic regression analysis shows a significantly high Odds ratio associated with CAD in the Duhok population. CONCLUSIONS: The eNOS (ab) variant seems to be a protective CAD factor for patients. Low serum NO levels are another risk factor for the advancement of CAD, suggesting their involvement in atherosclerosis. The (a) allele's protective effect is mediated through changes in eNOS promoter activity and higher NO levels.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/genética , Óxido Nítrico , Estudios de Casos y Controles , Pronóstico , Óxido Nítrico Sintasa de Tipo III/genética , Genotipo , Biomarcadores
3.
Curr Issues Mol Biol ; 44(1): 433-448, 2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35723409

RESUMEN

Left ventricular hypertrophy (LVH) is characterized by increased myocardium thickness due to increased oxidative stress and downregulation of cystathione γ lyase (CSE) endothelial nitric oxide synthase (eNOS). Upregulation of CSE by hydrogen sulphide (H2S) and ENOS by L-arginine can arrest the progression of LVH individually. The present study explored the combined treatment of H2S and NO in the progression of LVH, and demonstrated that the response is due to H2S, NO or formation of either new molecule in physiological, pathological, and pharmacological in vivo settings of LVH. Exogenous administration H2S+NO in LVH significantly reduced (all p < 0.05) systolic blood pressure (SBP) and mean arterial pressure (MAP), LV index, heart index and oxidative stress when compared to the LVH group. There was downregulation of CSE mRNA and eNOS in the heart, and exogenous administration of H2S+NO groups upregulated eNOS MRNA while CSE MRNA remained downregulated in the hearts of the LVH group. Similar trends were observed with concentrations of H2S and NO in the plasma and tissue. It can be concluded that combined treatment of LVH with H2S and NO significantly ameliorate the progression of LVH by attenuating systemic hemodynamic and physical indices, and by decreasing oxidative stress. Molecular expression data in the myocardium of LVH depicts that combined treatment upregulated eNOS/NO while it downregulated CSE/H2S pathways in in vivo settings, and it is always eNOS/NO pathways which play a major role.

4.
Biochem Genet ; 60(6): 2120-2136, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35260951

RESUMEN

Nitric oxide (NO) a potent vasodilator synthesized by endothelial cells has anti-atherosclerotic properties and maintains vascular tone. It has been documented that its reduced bioavailability in vascular endothelium plays an important role in the development and progression of coronary artery disease (CAD). Therefore, we aimed to investigate the association of - 786 T > C and 894 G > T polymorphisms of eNOS with CAD. This study included 211 CAD patients and 260 controls of North Indian Punjabi population. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Logistic regression analysis revealed that the TC and CC genotypes of - 786 T > C were significantly associated with the higher risk of CAD (OR: 2.00, p = 0.001: OR: 4.63, p = 0.001, respectively). Similarly, the GT and TT genotypes of 894 G > T were found to be significantly associated with the higher risk of CAD (OR: 1.96, p = 0.001; OR: 4.54, p = 0.005, respectively). Moreover, the recessive model in  - 786 T > C (OR: 3.58, p = 0.002) and 894 G > T (OR: 3.62, p = 0.009) polymorphisms provided 3.6-fold increased risk for CAD. Furthermore, the CG, TT, and CT haplotypes were also associated with the increased risk of CAD (OR: 2.1, p = 0.001; OR: 2, p = 0.002; OR: 3.1, p = 0.001, respectively). In addition, the CC genotype of - 786 T > C and GT genotype of 894 G > T were significantly associated with higher levels of triglycerides (TG) and very low-density lipoproteins cholesterol (VLDL-C). The present study reported the association of - 786 T > C and 894 G > T polymorphisms of eNOS with CAD and abnormal lipid levels in North Indian Punjabi population.


Asunto(s)
Enfermedad de la Arteria Coronaria , Óxido Nítrico Sintasa de Tipo III , Humanos , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/epidemiología , Células Endoteliales , Predisposición Genética a la Enfermedad , Genotipo , Óxido Nítrico Sintasa de Tipo III/genética , Polimorfismo de Nucleótido Simple , India
5.
J Biol Chem ; 295(8): 2203-2211, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31914408

RESUMEN

Production of reactive oxygen species caused by dysregulated endothelial nitric-oxide synthase (eNOS) activity is linked to vascular dysfunction. eNOS is a major target protein of the primary calcium-sensing protein calmodulin. Calmodulin is often modified by the main biomarker of nitroxidative stress, 3-nitrotyrosine (nitroTyr). Despite nitroTyr being an abundant post-translational modification on calmodulin, the mechanistic role of this modification in altering calmodulin function and eNOS activation has not been investigated. Here, using genetic code expansion to site-specifically nitrate calmodulin at its two tyrosine residues, we assessed the effects of these alterations on calcium binding by calmodulin and on binding and activation of eNOS. We found that nitroTyr-calmodulin retains affinity for eNOS under resting physiological calcium concentrations. Results from in vitro eNOS assays with calmodulin nitrated at Tyr-99 revealed that this nitration reduces nitric-oxide production and increases eNOS decoupling compared with WT calmodulin. In contrast, calmodulin nitrated at Tyr-138 produced more nitric oxide and did so more efficiently than WT calmodulin. These results indicate that the nitroTyr post-translational modification, like tyrosine phosphorylation, can impact calmodulin sensitivity for calcium and reveal Tyr site-specific gain or loss of functions for calmodulin-induced eNOS activation.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tirosina/metabolismo , Animales , Bovinos , Extractos Celulares , Fluorescencia , Células HEK293 , Humanos , Interferometría , Nitrosación , Unión Proteica
6.
J Hepatol ; 75(2): 377-386, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33675874

RESUMEN

BACKGROUND & AIMS: Liver sinusoidal endothelial cell (LSEC) dysfunction has been reported in alcohol-related liver disease, yet it is not known whether LSECs metabolize alcohol. Thus, we investigated this, as well as the mechanisms of alcohol-induced LSEC dysfunction and a potential therapeutic approach for alcohol-induced liver injury. METHODS: Primary human, rat and mouse LSECs were used. Histone deacetylase 6 (HDAC6) was overexpressed specifically in liver ECs via adeno-associated virus (AAV)-mediated gene delivery to decrease heat shock protein 90 (Hsp90) acetylation in ethanol-fed mice. RESULTS: LSECs expressed CYP2E1 and alcohol dehydrogenase 1 (ADH1) and metabolized alcohol. Ethanol induced CYP2E1 in LSECs, but not ADH1. Alcohol metabolism by CYP2E1 increased Hsp90 acetylation and decreased its interaction with endothelial nitric oxide synthase (eNOS) leading to a decrease in nitric oxide (NO) production. A non-acetylation mutant of Hsp90 increased its interaction with eNOS and NO production, whereas a hyperacetylation mutant decreased NO production. These results indicate that Hsp90 acetylation is responsible for decreases in its interaction with eNOS and eNOS-derived NO production. AAV8-driven HDAC6 overexpression specifically in liver ECs deacetylated Hsp90, restored Hsp90's interaction with eNOS and ameliorated alcohol-induced liver injury in mice. CONCLUSION: Restoring LSEC function is important for ameliorating alcohol-induced liver injury. To this end, blocking acetylation of Hsp90 specifically in LSECs via AAV-mediated gene delivery has the potential to be a new therapeutic strategy. LAY SUMMARY: Alcohol metabolism in liver sinusoidal endothelial cells (LSECs) and the mechanism of alcohol-induced LSEC dysfunction are largely unknown. Herein, we demonstrate that LSECs can metabolize alcohol. We also uncover a mechanism by which alcohol induces LSEC dysfunction and liver injury, and we identify a potential therapeutic strategy to prevent this.


Asunto(s)
Acetilación/efectos de los fármacos , Hepatopatías Alcohólicas/genética , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Análisis de Varianza , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Proteínas HSP90 de Choque Térmico , Humanos , Hepatopatías Alcohólicas/etiología , Ratones , Ratas
7.
FASEB J ; 34(5): 6808-6823, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32239698

RESUMEN

Asymmetric dimethylarginine (ADMA), an endogenous inhibitor and uncoupler of nitric oxide synthase, has gained attention as a risk factor for cardiac disease, metabolic syndrome, and cerebrovascular disease. In this study, we investigated the role of systemic ADMA overburden in cerebromicrovascular pathology associated with cognitive dysfunction using APPSwDI transgenic mice expressing human ß-amyloid precursor protein Swedish (Tg-SwDI), a model of cerebrovascular ß-amyloidosis. To induce systemic overburden of ADMA, Tg-SwDI mice were treated with a daily dose of exogenous ADMA. ADMA treatment resulted in elevated ADMA levels in the blood and brain of Tg-SwDI mice. ADMA treatment induced the brain nitrosative stress and inflammation as well as enhanced the brain Aß deposition and cognitive impairment in Tg-SwDI mice. However, ADMA treatment had no such effects on wild type mice. ADMA treatment also exacerbated brain microvascular pathology in Tg-SwDI mice as observed by increased blood-brain barrier dysfunction, loss of tight junction proteins, increased endothelial stress fibers, and decreased microvessel density in the brain. In addition, similar observations were made in cultured human brain microvessel endothelial cells, where ADMA in the presence of VEGF-induced endothelial cell signaling for F-actin stress fiber inducing endothelial barrier dysfunction. Overall, these data document the potential role of ADMA in the cognitive pathology under conditions of cerebrovascular ß-amyloidosis.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Arginina/análogos & derivados , Trastornos Cerebrovasculares/fisiopatología , Disfunción Cognitiva/patología , Endotelio Vascular/patología , Inhibidores Enzimáticos/toxicidad , Animales , Arginina/sangre , Arginina/toxicidad , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Inhibidores Enzimáticos/sangre , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
8.
Clin Exp Hypertens ; 43(5): 462-473, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-33775188

RESUMEN

BACKGROUND: Signal transduction of Angiotensin II (Ang II) induced autophagy and its role in Ang II-induced dysfunction of HUVECs are still unclear. METHODS: HUVECs are stimulated with different doses of Ang II (10-9-10-5 mol/L) for different time (6-48 hours). Autophagy-related protein markers: LC3, Beclin-1 and SQSTM1/p62 are measured by western blot. RESULTS: Incubation with Ang II increases autophagic flux (Beclin-1, autophagosomes formation, and degradation of SQSTM1/p62, LC3-I). Increased autophagic levels are inhibited by pretreatment with Ang II type 1 receptor (AT1) blocker (Candesartan), NADPH Oxidase inhibitor (apocycin), mitochondrial KATP channels inhibitor (5-hydroxydecanoate, 5HD). 3-Methyladenine (inhibitors of autophagy) and rapamycin (activator of autophagy) respectively inhibits or activates Ang II-induced autophagy levels. Ang II decreases phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production in HUVECs. L-NAME (NOS inhibitor) totally mimics the actions of Ang II on eNOS, NO production and autophagy levels. Rapamycin further decreases NO production combined with Ang II. Silence Atg5 completely reverses Ang II-activated autophagy levels. CONCLUSIONS: Our results demonstrate that Ang II stimulation increases autophagy levels via AT1 receptor, NADPH oxidase, mitochondrial KATP channel, eNOS, Atg5 signal pathway in HUVECs, and activation of autophagy contributes to Ang II induced dysfunction of HUVECs.


Asunto(s)
Angiotensina II/toxicidad , Autofagia , Células Endoteliales de la Vena Umbilical Humana/patología , Acetofenonas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Bencimidazoles/farmacología , Compuestos de Bifenilo/farmacología , Ácidos Decanoicos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Hidroxiácidos/farmacología , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Tetrazoles/farmacología , Factores de Tiempo
9.
Genomics ; 112(3): 2452-2458, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32014524

RESUMEN

BACKGROUND: Relationship between endothelial nitric oxide synthase (eNOS) polymorphisms and predisposition to coronary artery disease (CAD) are still controversial and ambiguous. So we performed this meta-analysis to more precisely estimate relationship between eNOS polymorphisms and CAD by pooling the results of already published studies. METHODS: We searched Pubmed, Embase, Web of Science and CNKI for eligible studies. We used Review Manager to pool the results of eligible studies. RESULTS: One hundred and fifty-five studies were included in this meta-analysis. We found that eNOS rs1799983, rs2070744 and rs869109213 polymorphisms were all significantly associated with CAD in the general population. We also detected similar significant results for eNOS rs1799983, rs2070744 and rs869109213 polymorphisms in both Caucasians and Asians in further subgroup analyses. CONCLUSIONS: This meta-analysis demonstrated that eNOS rs1799983, rs2070744 and rs869109213 polymorphisms might influence predisposition to CAD in both Caucasians and Asians.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Óxido Nítrico Sintasa de Tipo III/genética , Polimorfismo Genético , Pueblo Asiatico/genética , Enfermedad de la Arteria Coronaria/etnología , Predisposición Genética a la Enfermedad , Humanos , Población Blanca/genética
10.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205883

RESUMEN

Aneurysmal subarachnoid hemorrhage (SAH) is a devastating emergent event associated with high mortality and morbidity. Survivors usually experience functional neurological sequelae caused by vasospasm-related delayed ischemia. In this study, male Sprague-Dawley rats were randomly assigned to five groups: sham (non-SAH) group, SAH group, and three groups with SAH treated with different doses of valproic acid (VPA) (10, 20, 40 mg/kg, once-daily, for 7 days). The severity of vasospasm was determined by the ratio of cross-sectional areas to intima-media thickness of the basilar arteries (BA) on the seventh day after SAH. The BA showed decreased expression of phospho-Akt proteins. The dentate gyrus showed increased expression of cleaved caspase-3 and Bax proteins and decreased expression of Bcl-2, phospho-ERK 1/2, phospho-Akt and acetyl-histone H3 proteins. The incidence of SAH-induced vasospasm was significantly lower in the SAH group treated with VPA 40 mg/kg (p < 0.001). Moreover, all groups treated with VPA showed reversal of the above-mentioned protein expression in BA and the dentate gyrus. Treatment with VPA upregulated histone H3 acetylation and conferred anti-vasospastic and neuro-protective effects by enhancing Akt and/or ERK phosphorylation. This study demonstrated that VPA could alleviate delayed cerebral vasospasm induced neuro-apoptosis after SAH.


Asunto(s)
Neuronas/efectos de los fármacos , Hemorragia Subaracnoidea/tratamiento farmacológico , Ácido Valproico/farmacología , Vasoespasmo Intracraneal/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Neuronas/metabolismo , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/patología , Vasoespasmo Intracraneal/genética , Vasoespasmo Intracraneal/patología , Proteína X Asociada a bcl-2/genética
11.
J Biol Chem ; 294(51): 19565-19576, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31719145

RESUMEN

Endothelial nitric oxide (NO) synthase (eNOS) plays a critical role in the maintenance of blood vessel homeostasis. Recent findings suggest that cytoskeletal dynamics play an essential role in regulating eNOS expression and activation. Here, we sought to test whether modulation of cytoskeletal dynamics through pharmacological regulation of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation affects eNOS expression and endothelial function in vitro and in vivo We found that tubulin acetylation inducer (tubacin), a compound that appears to selectively inhibit HDAC6 activity, dramatically increased eNOS expression in several different endothelial cell lines, as determined by both immunoblotting and NO production assays. Mechanistically, we found that these effects were not mediated by tubacin's inhibitory effect on HDAC6 activity, but rather were due to its ability to stabilize eNOS mRNA transcripts. Consistent with these findings, tubacin also inhibited proinflammatory cytokine-induced degradation of eNOS transcripts and impairment of endothelium-dependent relaxation in the mouse aorta. Furthermore, we found that tubacin-induced up-regulation in eNOS expression in vivo is associated with improved endothelial function in diabetic db/db mice and with a marked attenuation of ischemic brain injury in a murine stroke model. Our findings indicate that tubacin exhibits potent eNOS-inducing effects and suggest that this compound might be useful for the prevention or management of endothelial dysfunction-associated cardiovascular diseases.


Asunto(s)
Anilidas/farmacología , Endotelio Vascular/patología , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/química , Acetilación , Animales , Aorta/metabolismo , Encéfalo/patología , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Accidente Cerebrovascular/fisiopatología , Tubulina (Proteína)/química , Regulación hacia Arriba
12.
Mol Hum Reprod ; 26(6): 441-451, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32333783

RESUMEN

Concentrations of 2-methoxyestradiol (2ME2), a principal metabolite of estradiol, are significantly lower in women with severe preeclampsia. Nitric oxide (NO) released by endothelial nitric oxide synthase (eNOS) plays an important role in regulating cardiovascular homeostasis. Importantly, high-density lipoprotein (HDL) stimulates eNOS activity via endothelial human scavenger receptor class B type I (hSR-BI/CLA-1). Here, we aimed to determine the effect of 2ME2 on hSR-BI/CLA-1 expression in human umbilical vein endothelial cells (HUVECs). hSR-BI/CLA-1 expression was measured by real-time PCR, western blotting and reporter gene assays; eNOS activity was assessed by the measurement of eNOS phosphorylation. Both the mRNA and protein concentrations of hSR-BI/CLA-1 were significantly increased by 2ME2 in HUVECs. 2ME2 also dose-dependently increased the transcriptional activity of the hSR-BI/CLA-1 promoter. The effect of 2ME2 treatment on the promoter activity of hSR-BI/CLA-1 was abrogated by treatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, as was the increase in HDL-induced eNOS activation. Notably, constitutively active Akt increased the activity of the hSR-BI/CLA-1 promoter, whereas dominant-negative Akt abolished the effect of 2ME2 treatment on hSR-BI/CLA-1 promoter activity. The nuclear Sp1 protein concentration was significantly increased by exposure to 2ME2 and Sp1 overexpression increased the promoter activity of the hSR-BI/CLA gene. Furthermore, knockdown of Sp1 inhibited the effect of 2ME2 treatment on hSR-BI/CLA-1 protein expression. These results indicate that 2ME2 treatment increases HDL-dependent eNOS phosphorylation by upregulating endothelial hSR-BI/CLA-1 expression, suggesting that 2ME2 has a potential therapeutic value in the treatment of preeclampsia.


Asunto(s)
2-Metoxiestradiol/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , 2-Metoxiestradiol/uso terapéutico , Western Blotting , Inmunoprecipitación de Cromatina , Femenino , Humanos , Lipoproteínas HDL/metabolismo , Óxido Nítrico/metabolismo , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Embarazo
13.
Clin Exp Hypertens ; 42(4): 352-359, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31518162

RESUMEN

Background: Capsaicin, a pungent component of chili pepper, has been reported to decrease blood pressure (BP) and to cause vasorelaxation via nitric oxide (NO) production. However, it is still unclear how dietary capsaicin effects on renovascular hypertension. To examine this, we observed the effects of dietary capsaicin on BP in 2-kidney, 1-clip renovascular hypertension (2K1C) rats, and investigated the participation of NO in the mechanism.Methods: Rats with 2K1C or sham-operated rats (SHAM) were treated with 0.006% capsaicin diet (CAP) or control diet (CTL) for 6 weeks. Systolic BP (SBP) was measured by tail-cuff method once a week. In the end, mean arterial BP (MAP) was measured in the rats under anesthesia. These observations were performed also in the rats taking a NO synthase (NOS) inhibitor (LN). After rats were euthanized, thoracic aortas were collected and used for western blot analyses to evaluate the phosphorylated ratio of endothelial NOS (eNOS), protein kinase A (PKA) and B (Akt), in order to explore a mechanism of the effects on BP by dietary capsaicin.Results: SBP and MAP in 2K1C rats were significantly higher than in SHAM rats when fed CTL, but not when fed CAP. Those in 2K1C-CAP rats were significantly lower than in 2K1C-CTL rats. LN suppressed the effect of dietary capsaicin. The ratios of phosphorylated (p-) eNOS/eNOS and p-Akt/Akt, but not p-PKA/PKA, were significantly increased in rats fed CAP compared with rats fed CTL.Conclusion: Dietary capsaicin may alleviate 2K1C renovascular hypertension, probably via enhancing phosphorylation of Akt and eNOS.Abbreviations: 2K1C: 2-kidney, 1-clip hypertension model; Akt: protein kinase B; Ang II: angiotensin II; ANOVA: measures analysis of variance; BP: blood pressure; EC: endothelial cell; eNOS: endothelial nitric oxide synthase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; L-NAME, LN: Nω-Nitro-L-arginine methyl ester hydrochloride; MA: mesenteric arteries; MAP: mean arterial blood pressure; NO: nitric oxide; PKA: protein kinase A; PVDF: polyvinylidene difluoride; SBP: Systolic blood pressure; SHR: spontaneously hypertensive rats; SN: sympathetic nervous; TRPV1: transient receptor potential vanilloid type 1; WKY: Wistar Kyoto rats.


Asunto(s)
Capsaicina , Hipertensión Renovascular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Capsaicina/metabolismo , Capsaicina/farmacología , Endotelio Vascular/efectos de los fármacos , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/fisiopatología , Masculino , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Fármacos del Sistema Sensorial/metabolismo , Fármacos del Sistema Sensorial/farmacología , Sistema Nervioso Simpático/fisiopatología
14.
Toxicol Appl Pharmacol ; 382: 114758, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521728

RESUMEN

Gold (Au) nanomaterials (NMs), particularly those with PEG surface functionalization, are generally considered to be biocompatible for biomedical applications due to relatively low cytotoxicity. Herein, we investigated the toxicity of PEGylated Au nanorods (NRs) to human umbilical vein endothelial cells (HUVECs), a commonly used in vitro model for human endothelium. We found a previously unknown effect that up to 10 µg/mL Au NRs, albeit not cytotoxic, decreased the mRNA and protein levels of kruppel-like factor 2 (KLF2), a transcription factor with well-documented vasoprotective effects. The results from PCR array showed that a number of genes associated with risk of cardiovascular diseases were altered by Au NRs, and several genes are downstream genes of KLF2 according to ingenuity pathway analysis (IPA). These effects could be observed with or without the presence of inflammatory stimuli lipopolysaccharide (LPS), which suggests a pre-existing inflammatory state is not required for Au NRs to alter KLF2 signaling pathway. We further identified that Au NRs significantly decreased eNOS mRNA/p-eNOS proteins as well as increased MCP-1 mRNA/sMCP-1 release, which are targets of KLF2. Combined, our data revealed a novel pathway that PEGylated Au NPs at non-cytotoxic concentrations might alter KLF leading to the increase of risk of cardiovascular diseases in human endothelial cells. Given the importance of KLF in vascular homeostasis, our data indicate that it is necessary to evaluate the influence of engineered NPs to KLF signaling pathways, especially for NPs with biomedical uses.


Asunto(s)
Oro/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Nanotubos/toxicidad , Polietilenglicoles/toxicidad , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Transducción de Señal/fisiología , Transcriptoma/efectos de los fármacos , Transcriptoma/fisiología
15.
Nitric Oxide ; 84: 1-6, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30582965

RESUMEN

BACKGROUND: Whether endothelial nitric oxide synthase (eNOS) polymorphisms are implicated in cancer development remains controversial. Therefore, we performed this study to obtain a more conclusive result on associations between eNOS polymorphisms and cancer. METHODS: Literature retrieve was conducted in PubMed, Medline and Embase. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. RESULTS: Forty-one studies were enrolled for analyses. Pooled overall analyses showed that rs1799983 (dominant model: p = 0.01; recessive model: p = 0.007; allele model: p = 0.005), rs2070744 (recessive model: p = 0.004) and rs869109213 (recessive model: p < 0.0001; allele model: p = 0.02) polymorphisms were all significantly associated with individual susceptibility to cancer. Further subgroup analyses revealed that rs2070744 and rs869109213 polymorphisms were only significantly associated with individual susceptibility to cancer in Caucasians, whereas the rs1799983 polymorphism was significantly associated with individual susceptibility to cancer in both Caucasians and Asians. CONCLUSIONS: Our findings indicated that rs1799983, rs2070744 and rs869109213 polymorphisms may serve as genetic biomarkers of cancer in certain ethnicities.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias/genética , Óxido Nítrico Sintasa de Tipo III/genética , Polimorfismo Genético , Pueblo Asiatico , Humanos , Población Blanca
16.
Nitric Oxide ; 83: 51-64, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590116

RESUMEN

Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal , Células Cultivadas , Humanos , Oxidación-Reducción
17.
Biol Pharm Bull ; 42(11): 1883-1890, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31685770

RESUMEN

Since grape extract (GE) contains oligomeric proanthocyanidins and numerous polyphenols, dietary GE supplements may exert protective effects against various diseases. The present study investigated the pharmacological effects of GE derived from Chardonnay in vitro and in vivo. GE (100 µg/mL) completely inhibited tumor necrosis factor-α-induced endothelin-1, monocyte chemoattractant protein-1, interleukin-1ß, and intercellular adhesion molecule-1 gene expression in cultured endothelial cells. GE also strongly stimulated the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) pathway. In the in vivo study, the effects of GE on ischemic acute kidney injury (AKI) were examined using male C57bl/6J wild-type and eNOS-/- mice. Right nephrectomized mice were exposed to 45 min of ischemia in the left kidney and this was followed by reperfusion. Although renal functional parameters in AKI mice significantly increased 48 h after reperfusion, the administration of GE (0.1 and 1 mg/kg, intravenous (i.v.)) 5 min before ischemia dose-dependently improved post-ischemic renal dysfunction in wild-type mice. Renal histopathological studies on AKI mice revealed tubular necrosis, proteinaceous casts in tubuli, and medullary congestion. The administration of GE ameliorated this damage in wild-type mice, but not in eNOS-/- mice. Furthermore, GE significantly restored decreases in the renal nitric oxide metabolite content due to ischemia in wild-type mice, but not in eNOS-/- mice. Thus, eNOS is closely involved in the renoprotective effects of GE, strongly suggesting that GE supplements are useful as a prophylactic treatment for the development of ischemic AKI.


Asunto(s)
Lesión Renal Aguda/prevención & control , Extracto de Semillas de Uva/farmacología , Extractos Vegetales/farmacología , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Quimiocina CCL2/metabolismo , Células Endoteliales/metabolismo , Endotelina-1/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-1beta/metabolismo , Isquemia , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reperfusión , Transducción de Señal
18.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877924

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is upregulated by hypoxia and is a crucial stimulator for choroidal neovascularization (CNV) in age-related macular degeneration and pathologic myopia, as well as retinal neovascularization in proliferative diabetic retinopathy. Retinal and choroidal endothelial cells play key roles in the development of retinal and CNV, and subsequent fibrosis. At present, the effects of gold nanoparticles (AuNPs) on the VEGF-induced choroid-retina endothelial (RF/6A) cells are still unknown. In our study, we investigated the effects of AuNPs on RF/6A cell viabilities and cell adhesion to fibronectin, a major ECM protein of fibrovascular membrane. Furthermore, the inhibitory effects of AuNPs on RF/6A cell migration induced by VEGF and its signaling were studied. METHODS: The cell viability assay was used to determine the viability of cells treated with AuNPs. The migration of RF/6A cells was assessed by the Transwell migration assay. The cell adhesion to fibronectin was examined by an adhesion assay. The VEGF-induced signaling pathways were determined by western blotting. RESULTS: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay revealed no cytotoxicity of AuNPs on RF/6A cells. AuNPs inhibited VEGF-induced RF/6A cell migration in a concentration-dependent manner but showed no significant effects on RF/6A cell adhesion to fibronectin. Inhibitory effects of AuNPs on VEGF-induced Akt/eNOS were found. CONCLUSIONS: These results suggest that AuNPs are an effective inhibitor of VEGF-induced RF/6A cell migration through the Akt/eNOS pathways, but they have no effects on their cell viabilities and cell adhesion to fibronectin.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Coroides/metabolismo , Células Endoteliales/metabolismo , Oro , Nanopartículas del Metal/química , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Línea Celular , Coroides/citología , Células Endoteliales/citología , Oro/química , Oro/farmacología , Macaca mulatta , Retina/citología
19.
Molecules ; 24(7)2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30935162

RESUMEN

Phytoestrogens are plant-derived chemicals that are found in many foods and have estrogenic activity. We previously showed that blackcurrant extract (BCE) and anthocyanins have phytoestrogenic activity mediated via estrogen receptors (ERs), and anthocyanins may improve vascular function. BCE contains high levels of anthocyanins, but their health-promoting effects are unclear. This study examined the effects of BCE on the regulation of endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis in human endothelial cells as key regulators in cardiovascular disease. The results showed that eNOS mRNA levels were significantly upregulated in BCE- or anthocyanin-treated human vascular endothelial cells but decreased in cells treated with fulvestrant, an ER antagonist. These results corresponded with NO levels, suggesting that BCE and anthocyanin may regulate NO synthesis via eNOS expression. Thus, the phytoestrogenic effects exerted by BCE via ERs influenced eNOS mRNA expression and NO synthesis. In vivo, we investigated whether anthocyanin-rich BCE upregulated eNOS protein expression in ovariectomized (OVX) rats, a widely used animal model of menopause. Our results showed that anthocyanin-rich BCE significantly upregulated eNOS mRNA levels and NO synthesis through phytoestrogenic activity and therefore promoted blood vessel health in OVX rats as a postmenopausal model.


Asunto(s)
Antocianinas/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Fitoestrógenos/farmacología , Animales , Antocianinas/química , Femenino , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fitoestrógenos/química , Ratas
20.
Fetal Pediatr Pathol ; 38(5): 361-375, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31130046

RESUMEN

Aims: In this study, we hypothesized that maternal anemia leads to altered expression of angiogenic proteins vascular endothelial growth factor (VEGF), placental growth factor (PLGF), nitrotyrosine (NT) residues, and endothelial nitric oxide synthase (e-NOS) in the placenta. Hence, we study the expression of the abovementioned proteins in the placentas of mothers with different grades of anemia. Materials and methods: Our study was conducted in 48 pregnant women (36-40 weeks of gestation), who were divided into four groups-normal, mild, moderate, and severe anemia. After delivery, the expression of the angiogenic proteins was studied in their placentas by immunohistochemistry. Results: In our study, 58.3% of the pregnant women were anemic, among which 20.83% had mild anemia, 18.75% had moderate anemia, and 18.75% had severe anemia. Immunohistochemical staining intensity for VEGF, PLGF, NT residues, and e-NOS proteins was observed to be higher in the placentas of anemic women when compared with the non-anemic women. Conclusion: Our study showed that there is an increased expression of angiogenic proteins in the placentas of anemic mothers, which probably is an adaptive response leading to changes in placental vessels.


Asunto(s)
Anemia Ferropénica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor de Crecimiento Placentario/metabolismo , Placenta/metabolismo , Complicaciones Hematológicas del Embarazo/metabolismo , Tirosina/análogos & derivados , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anemia Ferropénica/diagnóstico , Femenino , Humanos , Inmunohistoquímica , Embarazo , Complicaciones Hematológicas del Embarazo/diagnóstico , Índice de Severidad de la Enfermedad , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA