Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 791
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105484, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992804

RESUMEN

Sterols are hydrophobic molecules, known to cluster signaling membrane-proteins in lipid rafts, while methyl-ß-cyclodextrin (MßCD) has been a major tool for modulating membrane-sterol content for studying its effect on membrane proteins, including the transient receptor potential (TRP) channels. The Drosophila light-sensitive TRP channels are activated downstream of a G-protein-coupled phospholipase Cß (PLC) cascade. In phototransduction, PLC is an enzyme that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol, inositol-tris-phosphate, and protons, leading to TRP and TRP-like (TRPL) channel openings. Here, we studied the effects of MßCD on Drosophila phototransduction using electrophysiology while fluorescently monitoring PIP2 hydrolysis, aiming to examine the effects of sterol modulation on PIP2 hydrolysis and the ensuing light-response in the native system. Incubation of photoreceptor cells with MßCD dramatically reduced the amplitude and kinetics of the TRP/TRPL-mediated light response. MßCD also suppressed PLC-dependent TRP/TRPL constitutive channel activity in the dark induced by mitochondrial uncouplers, but PLC-independent activation of the channels by linoleic acid was not affected. Furthermore, MßCD suppressed a constitutively active TRP mutant-channel, trpP365, suggesting that TRP channel activity is a target of MßCD action. Importantly, whole-cell voltage-clamp measurements from photoreceptors and simultaneously monitored PIP2-hydrolysis by translocation of fluorescently tagged Tubby protein domain, from the plasma membrane to the cytosol, revealed that MßCD virtually abolished the light response when having little effect on the light-activated PLC. Together, MßCD uncoupled TRP/TRPL channel gating from light-activated PLC and PIP2-hydrolysis suggesting the involvement of distinct nanoscopic lipid domains such as lipid rafts and PIP2 clusters in TRP/TRPL channel gating.


Asunto(s)
Proteínas de Drosophila , Lípidos de la Membrana , Canales de Potencial de Receptor Transitorio , Fosfolipasas de Tipo C , beta-Ciclodextrinas , Animales , beta-Ciclodextrinas/farmacología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lípidos de la Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de los fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Esteroles/metabolismo , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Fosfolipasas de Tipo C/metabolismo , Fototransducción/efectos de los fármacos
2.
J Biol Chem ; 300(1): 105496, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013088

RESUMEN

The yeast vacuole membrane can phase separate into ordered and disordered domains, a phenomenon that is required for micro-lipophagy under nutrient limitation. Despite its importance as a biophysical model and physiological significance, it is not yet resolved if specific lipidome changes drive vacuole phase separation. Here we report that the metabolism of sphingolipids (SLs) and their sorting into the vacuole membrane can control this process. We first developed a vacuole isolation method to identify lipidome changes during the onset of phase separation in early stationary stage cells. We found that early stationary stage vacuoles are defined by an increased abundance of putative raft components, including 40% higher ergosterol content and a nearly 3-fold enrichment in complex SLs (CSLs). These changes were not found in the corresponding whole cell lipidomes, indicating that lipid sorting is associated with domain formation. Several facets of SL composition-headgroup stoichiometry, longer chain lengths, and increased hydroxylations-were also markers of phase-separated vacuole lipidomes. To test SL function in vacuole phase separation, we carried out a systematic genetic dissection of their biosynthetic pathway. The abundance of CSLs controlled the extent of domain formation and associated micro-lipophagy processes, while their headgroup composition altered domain morphology. These results suggest that lipid trafficking can drive membrane phase separation in vivo and identify SLs as key mediators of this process in yeast.


Asunto(s)
Membranas , Saccharomyces cerevisiae , Esfingolípidos , Vacuolas , Membranas/metabolismo , Separación de Fases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/química , Esfingolípidos/genética , Esfingolípidos/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Lipidómica , Microscopía Fluorescente
3.
Appl Environ Microbiol ; 90(7): e0087424, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38940563

RESUMEN

Farnesol salvage, a two-step pathway converting farnesol to farnesyl pyrophosphate (FPP), occurs in bacteria, plants, and animals. This paper investigates the presence of this pathway in fungi. Through bioinformatics, biochemistry, and physiological analyses, we demonstrate its absence in the yeasts Saccharomyces cerevisiae and Candida albicans, suggesting a likely absence across fungi. We screened 1,053 fungal genomes, including 34 from C. albicans, for potential homologs to four genes (Arabidopsis thaliana AtFOLK, AtVTE5, AtVTE6, and Plasmodium falciparum PfPOLK) known to accomplish farnesol/prenol salvage in other organisms. Additionally, we showed that 3H-farnesol was not converted to FPP or any other phosphorylated prenol, and exogenous farnesol was not metabolized within 90 minutes at any phase of growth and did not rescue cells from the toxic effects of atorvastatin, but it did elevate the levels of intracellular farnesol (Fi). All these experiments were conducted with C. albicans. In sum, we found no evidence for farnesol salvage in fungi. IMPORTANCE: The absence of farnesol salvage constitutes a major difference in the metabolic capabilities of fungi. In terms of fungal physiology, the lack of farnesol salvage pathways relates to how farnesol acts as a quorum-sensing molecule in Candida albicans and why farnesol should be investigated for use in combination with other known antifungal antibiotics. Its absence is essential for a model (K. W. Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024), wherein protein farnesylation, protein chaperones, and the unfolded protein response are combined under the unifying umbrella of a cell's intracellular farnesol (Fi). In terms of human health, farnesol should have at least two different modes of action depending on whether those cells have farnesol salvage. Because animals have farnesol salvage, we can now see the importance of dietary prenols as well as the potential importance of farnesol in treating neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.


Asunto(s)
Candida albicans , Farnesol , Farnesol/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Genoma Fúngico , Sesquiterpenos
4.
BMC Microbiol ; 24(1): 196, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849761

RESUMEN

Biofilms produced by Candida albicans present a challenge in treatment with antifungal drug. Enhancing the sensitivity to fluconazole (FLC) is a reasonable method for treating FLC-resistant species. Moreover, several lines of evidence have demonstrated that berberine (BBR) can have antimicrobial effects. The aim of this study was to clarify the underlying mechanism of these effects. We conducted a comparative study of the inhibition of FLC-resistant strain growth by FLC treatment alone, BBR treatment alone, and the synergistic effect of combined FLC and BBR treatment. Twenty-four isolated strains showed distinct biofilm formation capabilities. The antifungal effect of combined FLC and BBR treatment in terms of the growth and biofilm formation of Candida albicans species was determined via checkerboard, time-kill, and fluorescence microscopy assays. The synergistic effect of BBR and FLC downregulated the expression of the efflux pump genes CDR1 and MDR, the hyphal gene HWP1, and the adhesion gene ALS3; however, the gene expression of the transcriptional repressor TUP1 was upregulated following treatment with this drug combination. Furthermore, the addition of BBR led to a marked reduction in cell surface hydrophobicity. To identify resistance-related genes and virulence factors through genome-wide sequencing analysis, we investigated the inhibition of related resistance gene expression by the combination of BBR and FLC, as well as the associated signaling pathways and metabolic pathways. The KEGG metabolic map showed that the metabolic genes in this strain are mainly involved in amino acid and carbon metabolism. The metabolic pathway map showed that several ergosterol (ERG) genes were involved in the synthesis of cell membrane sterols, which may be related to drug resistance. In this study, BBR + FLC combination treatment upregulated the expression of the ERG1, ERG3, ERG4, ERG5, ERG24, and ERG25 genes and downregulated the expression of the ERG6 and ERG9 genes compared with fluconazole treatment alone (p < 0.05).


Asunto(s)
Antifúngicos , Berberina , Biopelículas , Candida albicans , Biología Computacional , Farmacorresistencia Fúngica , Fluconazol , Pruebas de Sensibilidad Microbiana , Berberina/farmacología , Fluconazol/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Biología Computacional/métodos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sinergismo Farmacológico , Regulación Fúngica de la Expresión Génica/efectos de los fármacos
5.
New Phytol ; 242(4): 1725-1738, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213001

RESUMEN

Ectomycorrhizal fungi are essential for nitrogen (N) cycling in many temperate forests and responsive to anthropogenic N addition, which generally decreases host carbon (C) allocation to the fungi. In the boreal region, however, ectomycorrhizal fungal biomass has been found to correlate positively with soil N availability. Still, responses to anthropogenic N input, for instance through atmospheric deposition, are commonly negative. To elucidate whether variation in N supply affects ectomycorrhizal fungi differently depending on geographical context, we investigated ectomycorrhizal fungal communities along fertility gradients located in two nemo-boreal forest regions with similar ranges in soil N : C ratios and inorganic N availability but contrasting rates of N deposition. Ectomycorrhizal biomass and community composition remained relatively stable across the N gradient with low atmospheric N deposition, but biomass decreased and the community changed more drastically with increasing N availability in the gradient subjected to higher rates of N deposition. Moreover, potential activities of enzymes involved in ectomycorrhizal mobilisation of organic N decreased as N availability increased. In forests with low external input, we propose that stabilising feedbacks in tree-fungal interactions maintain ectomycorrhizal fungal biomass and communities even in N-rich soils. By contrast, anthropogenic N input seems to impair ectomycorrhizal functions.


Asunto(s)
Biomasa , Bosques , Micorrizas , Nitrógeno , Suelo , Micorrizas/fisiología , Nitrógeno/metabolismo , Suelo/química , Microbiología del Suelo
6.
Mol Pharm ; 21(7): 3643-3660, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885973

RESUMEN

Sterol derivatives are a crucial part of liposomes, as their concentration and nature can induce significant alternations in their characteristic features. For natural liposomal-based (phospholipid-based) studies, the bulk literature is already present depicting the role of the concentration or nature of different sterol derivatives in modulation of membrane properties. However, the studies aiming at evaluating the effect of sterol derivatives on synthetic liposomal assemblies are limited to cholesterol (Chl), and a comparative effect with other sterol derivatives, such as ergosterol (Erg), has never been studied. To fill this research gap, through this work, we intend to provide insights into the concentration-dependent effect of two sterol derivatives (Chl and Erg) on a synthetic liposomal assembly (i.e., metallosomes) prepared via thin film hydration route using a double-tailed metallosurfactant fabricated by modifying cetylpyridinium chloride with cobalt (Co) (i.e., Co:CPC II). The morphological evaluations with cryogenic-transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) indicated that metallosomes retained their spherical morphology irrespective of the nature and concentration of sterol derivatives. However, the size, ζ-potential, and lamellar width values were significantly modified with the incorporation of sterol derivatives in a concentration-dependent manner. In-depth studies affirmed that the extent of modulation of the bilayer in terms of hydrophobicity, fluidity, and rigidity was more severe with Chl than Erg. Such differences in the membrane properties lead to their contrasting behavior in the delivery of the broad-spectrum active compound "curcumin". From entrapment to in vitro behavior, the metallosomes demonstrated dissimilar behavior as even though Erg-modified metallosomes (at higher concentrations of Erg) exhibited low entrapment efficiency, they still could easily release >80% of the entrapped drug. In vitro studies conducted with Staphylococcus aureus bacterial cultures further revealed an interesting pattern of activity as the incorporation of Chl reduced the toxicity of the self-assembly, whereas their Erg-modified counterparts yielded slightly augmented toxicity toward these bacterial cells. Furthermore, Chl- and Erg-modified assemblies also exhibited contrasting behavior in their interaction studies with bacterial DNA.


Asunto(s)
Colesterol , Cobalto , Ergosterol , Membrana Dobles de Lípidos , Liposomas , Ergosterol/química , Cobalto/química , Liposomas/química , Colesterol/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica
7.
Arch Microbiol ; 206(7): 305, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878211

RESUMEN

Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Mutación
8.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727840

RESUMEN

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Membrana Celular , Isotiocianatos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Ciclo Celular/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismo
9.
Int Microbiol ; 27(2): 423-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37481507

RESUMEN

Candida spp. is a significant cause of topical and fungal infections in humans. In addition to Candida albicans, many non-albicans species such as C. krusei, C. glabrata, C. parapsilosis, C. tropicalis, C. guilliermondii cause severe infections. The main antifungal agents belong to three different classes, including azoles, polyenes, and echinocandins. However, resistance to all three categories of drugs has been reported. Therefore, there is an urgent need to search for other alternatives with antifungal activity. Many herbal extracts and compounds from natural sources show excellent antifungal activity. In this study, we used an oil extract from the fruits of Zanthoxylum armatum, which showed significant antifungal activity against various Candida spp. by two different methods-minimum inhibitory concentration (MIC) and agar diffusion. In addition, we attempted to explore the possible mechanism of action in C. albicans. It was found that the antifungal activity of Z. armatum oil is fungicidal and involves a decrease in the level of ergosterol in the cell membrane. The decrease in ergosterol level resulted in increased passive diffusion of a fluorescent molecule, rhodamine6G, across the plasma membrane, indicating increased membrane fluidity. The oil-treated cells showed decreased germ tube formation, an important indicator of C. albicans' virulence. The fungal cells also exhibited decreased attachment to the buccal epithelium, the first step toward invasion, biofilm formation, and damage to oral epithelial cells. Interestingly, unlike most antifungal agents, in which the generation of reactive oxygen species is responsible for killing, no significant effect was observed in the present study.


Asunto(s)
Antifúngicos , Zanthoxylum , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Especies Reactivas de Oxígeno , Frutas , Candida albicans , Pruebas de Sensibilidad Microbiana , Candida glabrata , Ergosterol/farmacología , Farmacorresistencia Fúngica
10.
Int Microbiol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126447

RESUMEN

Around 1.5 million mortality cases due to fungal infection are reported annually, posing a massive threat to global health. However, the effectiveness of current antifungal therapies in the treatment of invasive fungal infections is limited. Repurposing existing antifungal drugs is an advisable alternative approach for enhancing their effectiveness. This study evaluated the antifungal efficacy of the antiviral drug vidarabine against Candida albicans ATCC 90028. Antifungal susceptibility testing was performed by microbroth dilution assay and further processed to find the minimum fungicidal concentration. Investigation on probable mode of vidarabine action against C. albicans was assessed by using the ergosterol reduction assay, reactive oxygen species (ROS) accumulation, nuclear condensation, and apoptosis assay. Results revealed that C. albicans was susceptible to vidarabine action and exhibited minimum inhibitory concentration at 150 µg/ml. At a concentration of 300 µg/ml, vidarabine had fungicidal activity against C. albicans. 300 µg/ml vidarabine-treated C. albicans cells demonstrated 91% reduced ergosterol content. Annexin/FITC/PI assay showed that vidarabine (150 µg/ml) had increased late apoptotic cells up to 31%. As per the fractional inhibitory concentration index, vidarabine had synergistic activity with fluconazole and caspofungin against this fungus. The mechanism underlying fungicidal action of vidarabine was evaluated at the intracellular level, and probably because of increased nuclear condensation, enhanced ROS generation, and cell cycle arrest. In conclusion, this data is the first to report that vidarabine has potential to be used as a repurposed antifungal agent alone or in combination with standard antifungal drugs, and could be a quick and safe addition to existing therapies for treating fungal infections.

11.
Extremophiles ; 28(1): 17, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342818

RESUMEN

Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.


Asunto(s)
Basidiomycota , Trehalosa , Trehalosa/metabolismo , Cloruro de Sodio/metabolismo , Levaduras , Ergosterol/metabolismo , Frío
12.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346851

RESUMEN

AIM: To investigate antifungal activity of the extract and major metabolite of the endophytic fungus Acrophialophora jodhpurensis (belonging to Chaetomiaceae) against crown and root rot caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), as an important pathogen of tomato. METHODS AND RESULTS: The endophytic fungus A. jodhpurensis, has high inhibitory effect against R. solani AG4-HG II in vitro and in vivo. The media conditions were optimized for production of the endophyte's metabolites. The highest amounts of secondary metabolites were produced at pH 7, 30°C temperature, and in the presence of 0.5% glucose, 0.033% sodium nitrate, and 1 gl-1 asparagine as the best carbon, nitrogen, and amino acid sources, respectively. The mycelia were extracted by methanol and the obtained extract was submitted to various chromatography techniques. Phytochemical analysis via thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) spectroscopy showed that ergosterol peroxide was the major component in the extract of this endophyte. Antifungal activities of the methanolic extract and ergosterol peroxide in the culture media were studied against R. solani. Minimum inhibitory concentrations of the extract and ergosterol peroxide against the pathogen were 600 and 150 µg ml-1, respectively. Ergosterol peroxide revealed destructive effects on the pathogen structures in microscopic analyses and induced sclerotia production. Histochemical analyses revealed that it induced apoptosis in the mycelia of R. solani via superoxide production and cell death. Application of ergosterol peroxide in the leaf disc assay reduced the disease severity in tomato leaves. CONCLUSIONS: Antifungal metabolites produced by A. jodhpurensis, such as ergosterol peroxide, are capable of controlling destructive Rhizoctonia diseases on tomato.


Asunto(s)
Antifúngicos , Ergosterol/análogos & derivados , Rhizoctonia , Sordariales , Antifúngicos/farmacología , Antifúngicos/metabolismo , Extractos Vegetales/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
13.
Bioorg Chem ; 142: 106955, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924754

RESUMEN

Three new ergosterol derivatives brassisterol A-C (1-3) and two new epimeric bicycle-lactones brassictones A and B (4 and 5), were isolated from the co-cultivation of Alternaria brassicicola and Penicillium granulatum. The absolute configurations of these isolates were confirmed by extensive NMR spectra, TD-DFT ECD calculation, and the single crystal XRD data analysis. Amongst the metabolites, compound 1 exhibited potential anti-Parkinson's disease activity in both MPTP-induced zebrafish and MPP+-induced SH-SY5Y cells. Molecular mechanism studies in vitro showed that 1 attenuated the increase of α-synuclein, NLRP3, ASC, caspase-1, IL-1ß, IL-18, and GSDMD expression in the MPP+ induced PD model. Molecular docking in silico simulations exhibited that 1 was well accommodated to one of the binding pockets of NLRP3 8ETR in an appropriate conformation via forming typical hydrogen bonds as well as possessing a high negative binding affinity (-8.97 kcal/mol). Thus, our work suggested that 1 protected dopaminergic cell from neuroinflammation via targeting NLRP3/caspase-1/GSDMD signaling pathway.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Neuroblastoma , Animales , Humanos , Caspasa 1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Hongos/metabolismo , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
14.
Bioorg Chem ; 151: 107688, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106712

RESUMEN

Ergosterol peroxide (EP) isolated from the edible medicinal fungus Pleurotus ferulae has a wide range of anti-tumor activity, but poor water solubility and low bioavailability limit further application. In this study, EP was structurally modified using triphenylphosphine (TPP+), which combines mitochondrial targeting, amphiphilicity, and cytotoxicity. A series of TPP+-conjugated ergosterol peroxide derivatives (TEn) with different length linker arms were synthesized. The structure-activity relationship showed that the anticancer activity of TEn gradually decreased with the elongation of the linker arm. The compound TE3 has the optimal and broadest spectrum of antitumor effects. It mainly through targeting mitochondria, inducing ROS production, disrupting mitochondrial function, and activating mitochondria apoptosis pathway to exert anti-cervical cancer activity. Among them, TPP+ only acted as a mitochondrial targeting group, while EP containing peroxide bridge structure served as an active group to induce ROS. In vivo experiments have shown that TE3 has better anti-cervical cancer activity and safety than the first-line anticancer drug cisplatin, and can activate the immune response in mice. Although TE3 exhibits some acute toxicity, it is not significant at therapeutic doses. Therefore, TE3 has the potential for further development as an anti-cervical cancer drug.


Asunto(s)
Antineoplásicos , Productos Biológicos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ergosterol , Mitocondrias , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Humanos , Relación Estructura-Actividad , Animales , Ergosterol/química , Ergosterol/farmacología , Ergosterol/análogos & derivados , Ratones , Productos Biológicos/química , Productos Biológicos/farmacología , Estructura Molecular , Femenino , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Línea Celular Tumoral , Pleurotus/química , Ratones Endogámicos BALB C , Compuestos Organofosforados
15.
Bioorg Chem ; 153: 107782, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39244975

RESUMEN

Candida auris (C. auris) has caused notable outbreaks across the globe in last decade and emerged as a life-threatening human pathogenic fungus. Despite significant advances in antifungal research, the drug resistance mechanisms in C. auris still remain elusive. Under such pressing circumstances, research on identification of new antifungal compounds is of immense interest. Thus, our studies aimed at identifying novel drug candidates and elucidate their biological targets in C. auris. After screening of several series of synthetic and hemisynthetic compounds from JUNIA chemical library, compounds C4 (butyl 2-(4-chlorophenyl)hydrazine-1-carboxylate) and C13 (phenyl 2-(4-chlorophenyl) hydrazine-1-carboxylate), belonging to the carbazate series, were identified to display considerable antifungal activities against C. auris as well as its fluconazole resistant isolates. Elucidation of biological targets revealed that C4 and C13 lead to changes in polysaccharide composition of the cell wall and disrupt vacuole homeostasis. Mechanistic insights further unravelled inhibited efflux pump activities of ATP binding cassette transporters and depleted ergosterol content. Additionally, C4 and C13 cause mitochondrial dysfunction and confer oxidative stress. Furthermore, both C4 and C13 impair biofilm formation in C. auris. The in vivo efficacy of C4 and C13 were demonstrated in Caenorhabditis elegans model after C. auris infection showing reduced mortality of the nematodes. Together, promising antifungal properties were observed for C4 and C13 against C. auris that warrant further investigations. To summarise, collected data pave the way for the design and development of future first-in-class antifungal drugs.

16.
Appl Microbiol Biotechnol ; 108(1): 10, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38170307

RESUMEN

Due to increasing demand for high and stable crop production, human populations are highly dependent on pesticide use for growing and storing food. Environmental monitoring of these agrochemicals is therefore of utmost importance, because of their collateral effects on ecosystem and human health. Even though most current-use analytical methods achieve low detection limits, they require procedures that are too complex and costly for routine monitoring. As such, there has been an increased interest in biosensors as alternative or complementary tools to streamline detection and quantification of environmental contaminants. In this work, we developed a biosensor for environmental monitoring of tebuconazole (TEB), a common agrochemical fungicide. For that purpose, we engineered S. cerevisiae cells with a reporter gene downstream of specific promoters that are expressed after exposure to TEB and characterized the sensitivity and specificity of this model system. After optimization, we found that this easy-to-use biosensor consistently detects TEB at concentrations above 5 µg L-1 and does not respond to realistic environmental concentrations of other tested azoles, suggesting it is specific. We propose the use of this system as a complementary tool in environmental monitoring programs, namely, in high throughput scenarios requiring screening of numerous samples. KEY POINTS: • A yeast-based biosensor was developed for environmental monitoring of tebuconazole. •The biosensor offers a rapid and easy method for tebuconazole detection ≥ 5 µg L-1. •The biosensor is specific to tebuconazole at environmentally relevant concentrations.


Asunto(s)
Técnicas Biosensibles , Fungicidas Industriales , Humanos , Saccharomyces cerevisiae/genética , Ecosistema , Monitoreo del Ambiente
17.
Appl Microbiol Biotechnol ; 108(1): 244, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421461

RESUMEN

Candida albicans, one of the most prevalent conditional pathogenic fungi, can cause local superficial infections and lethal systemic infections, especially in the immunocompromised population. Secretory immunoglobulin A (sIgA) is an important immune protein regulating the pathogenicity of C. albicans. However, the actions and mechanisms that sIgA exerts directly against C. albicans are still unclear. Here, we investigated that sIgA directs against C. albicans hyphal growth and virulence to oral epithelial cells. Our results indicated that sIgA significantly inhibited C. albicans hyphal growth, adhesion, and damage to oral epithelial cells compared with IgG. According to the transcriptome and RT-PCR analysis, sIgA significantly affected the ergosterol biosynthesis pathway. Furthermore, sIgA significantly reduced the ergosterol levels, while the addition of exogenous ergosterol restored C. albicans hyphal growth and adhesion to oral epithelial cells, indicating that sIgA suppressed the growth of hyphae and the pathogenicity of C. albicans by reducing its ergosterol levels. By employing the key genes mutants (erg11Δ/Δ, erg3Δ/Δ, and erg3Δ/Δ erg11Δ/Δ) from the ergosterol pathway, sIgA lost the hyphal inhibition on these mutants, while sIgA also reduced the inhibitory effects of erg11Δ/Δ and erg3Δ/Δ and lost the inhibition of erg3Δ/Δ erg11Δ/Δ on the adhesion to oral epithelial cells, further proving the hyphal repression of sIgA through the ergosterol pathway. We demonstrated for the first time that sIgA inhibited C. albicans hyphal development and virulence by affecting ergosterol biosynthesis and suggest that ergosterol is a crucial regulator of C. albicans-host cell interactions. KEY POINTS: • sIgA repressed C. albicans hyphal growth • sIgA inhibited C. albicans virulence to host cells • sIgA affected C. albicans hyphae and virulence by reducing its ergosterol levels.


Asunto(s)
Candida albicans , Células Epiteliales , Virulencia , Candida albicans/genética , Ergosterol , Inmunoglobulina A Secretora
18.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38499446

RESUMEN

Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.


Asunto(s)
Arthrodermataceae , Curcumina , Curcumina/análogos & derivados , Antifúngicos/farmacología , Candida , Curcumina/farmacología , Pruebas de Sensibilidad Microbiana , Ergosterol , Trichophyton
19.
Mar Drugs ; 22(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535438

RESUMEN

An unreported prenylated indole derivative hydroxytakakiamide (4) was isolated, together with the previously described ergosterol (1), ergosterol acetate (2), and (3R)-3-(1H-indol-3-ylmethyl)-3, 4-dihydro-1H-1,4-benzodiazepine-2,5-dione (3), from the column fractions of the crude ethyl acetate extract of the culture of a marine sponge-associated fungus, Aspergillus fischeri MMERU 23. The structure of 4 was elucidated by the interpretation of 1D and 2D NMR spectral data and high-resolution mass spectrum. The absolute configuration of the stereogenic carbon in 3 was proposed to be the same as those of the co-occurring congeners on the basis of their biogenetic consideration and was supported by the comparison of its sign of optical rotation with those of its steroisomers. The crude ethyl acetate extract and 2 were evaluated, together with acetylaszonalenin (5) and helvolic acid (6), which were previously isolated from the same extract, for the in vivo antinociceptive activity in the mice model. The crude ethyl acetate extract exhibited antinociceptive activity in the acetic acid-induced writhing and formalin tests, while 2, 5, and 6 displayed the effects in the late phase of the formalin test. On the other hand, neither the crude ethyl acetate extract nor 2, 5, and 6 affected the motor performance of mice in both open-field and rotarod tests. Additionally, docking studies of 2, 5, and 6 were performed with 5-lipoxygenase (5-LOX) and phosphodiesterase (PDE) enzymes, PDE4 and PDE7, which are directly related to pain and inflammatory processes. Molecular docking showed that 6 has low affinity energy to PDE4 and PDE7 targets while retaining high affinity to 5-LOX. On the other hand, while 2 did not display any hydrogen bond interactions in any of its complexes, it achieved overall better energy values than 6 on the three antinociceptive targets. On the other hand, 5 has the best energy profile of all the docked compounds and was able to reproduce the crystallographic interactions of the 5-LOX complex.


Asunto(s)
Acetatos , Aspergillus , Hongos , Ácido Fusídico/análogos & derivados , Poríferos , Animales , Ratones , Simulación del Acoplamiento Molecular , Ácido Acético , Ergosterol , Analgésicos
20.
Artículo en Inglés | MEDLINE | ID: mdl-38763476

RESUMEN

The origin of vitamin D2 in herbivorous animals was investigated in vivo in sheep and in bovine as well as mouse gastrointestinal tracts. A high concentration of 25-hydroxyvitamin D2 in blood plasma of sheep both in summer and winter appeared to be incompatible with the undetectable level of vitamin D2 in the pasture on which the sheep were grazing. Studies with bovine rumen contents from a cow grazing the same pasture as the sheep, demonstrated an increased concentration of vitamin D2 on anaerobic incubation in a 'Rusitec' artificial rumen, which was further enhanced when cellulose powder was added as a fermentation substrate. The colon contents of mice that were fed from weaning on a vitamin D-free diet were found to contain vitamin D2. The results of these comparative studies in 3 animal species indicated that vitamin D2 was being generated by microbial anaerobic metabolism in the gastrointestinal tract.


Asunto(s)
Ergocalciferoles , Rumen , Animales , Bovinos , Ovinos/microbiología , Ratones , Rumen/microbiología , Rumen/metabolismo , Ergocalciferoles/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA