Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.157
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2222041120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276420

RESUMEN

Domesticated grapevines spread to Europe around 3,000 years ago. Previous studies have revealed genomic signals of introgression from wild to cultivated grapes in Europe, but the time, mode, genomic pattern, and biological effects of these introgression events have not been investigated. Here, we studied resequencing data from 345 samples spanning the distributional range of wild (Vitis vinifera ssp. sylvestris) and cultivated (V. vinifera ssp. vinifera) grapes. Based on machine learning-based population genetic analyses, we detected evidence for a single domestication of grapevine, followed by continuous gene flow between European wild grapes (EU) and cultivated grapes over the past ~2,000 y, especially from EU to wine grapes. We also inferred that soft-selective sweeps were the dominant signals of artificial selection. Gene pathways associated with the synthesis of aromatic compounds were enriched in regions that were both selected and introgressed, suggesting EU wild grapes were an important resource for improving the flavor of cultivated grapes. Despite the potential benefits of introgression in grape improvement, the introgressed fragments introduced a higher deleterious burden, with most deleterious SNPs and structural variants hidden in a heterozygous state. Cultivated wine grapes have benefited from adaptive introgression with wild grapes, but introgression has also increased the genetic load. In general, our study of beneficial and harmful effects of introgression is critical for genomic breeding of grapevine to take advantage of wild resources.


Asunto(s)
Domesticación , Vitis , Europa (Continente) , Genómica , Análisis de Secuencia de ADN , Vitis/genética
2.
Plant J ; 113(1): 127-144, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423230

RESUMEN

DNA acetylation alters the expression of responsive genes during plant development. In grapes (Vitis vinifera), however, little is known about this regulatory mechanism. In the present study, 'Kyoho' grapes treated with trichostatin A (TSA, a deacetylase inhibitor) were used for transcriptome sequencing and quantitative proteomics analysis. We observed that acetylation was associated with anthocyanin accumulation and gene expression. Acetylation positively regulated phenylalanine metabolism and flavonoid biosynthesis pathways. Using omics analysis, we detected an increase in the levels of the AP2/EREBP transcription factor family after TSA treatment, indicating its association with acetylation-deacetylation dynamics in grapes. Furthermore, ethylene response factor 4 (ERF4) physically interacted with VvHDAC19, a histone deacetylase, which synergistically reduced the expression of target genes involved in anthocyanin biosynthesis owing to the binding of VvERF4 to the GCC-box cis-regulatory element in the VvMYB5a promoter. VvHDAC19 and VvERF4 also controlled anthocyanin biosynthesis and accumulation by regulating acetylation levels of histones H3 and H4. Therefore, alterations in histone modification can significantly regulate the expression of genes involved in anthocyanin biosynthesis and affect grape ripening.


Asunto(s)
Antocianinas , Vitis , Antocianinas/metabolismo , Vitis/genética , Vitis/metabolismo , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Etilenos/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas
3.
BMC Plant Biol ; 24(1): 426, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769488

RESUMEN

To alleviate the selenium (Se) stress in fruit trees and improve its accumulation, the effects of exogenous indole-3-acetic acid (IAA) on the growth and Se accumulation of grapevine under Se stress were studied. The application of exogenous IAA increased the biomass of grapevine, and the concentration of exogenous IAA had a regression relationship with the biomass. The root and shoot biomass were the maximum at 60 mg L- 1 IAA, increasing by 15.61% and 23.95%, respectively, compared with the control. Exogenous IAA also increased the photosynthetic pigments and the activities of superoxide dismutase and peroxidase in grapevine. Moreover, exogenous IAA increased the contents of total Se, organic Se, and inorganic Se, and the concentration of exogenous IAA had a regression relationship with the total Se content. The highest contents of root total Se and shoot total Se were accumulated at 90 mg L- 1 IAA, increasing by 29.94% and 55.77% respectively,. In addition, the correlation and path analyses revealed that the carotenoid content and root total Se content were closely associated with the shoot total Se content. Therefore, the application of exogenous IAA can alleviate the stress of Se to grape and promote its uptake and the most effective amount for the uptake of Se is 90 mg L- 1 IAA.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Selenio , Vitis , Ácidos Indolacéticos/metabolismo , Selenio/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Biomasa
4.
BMC Plant Biol ; 24(1): 189, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486149

RESUMEN

BACKGROUND: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).


Asunto(s)
Clorofila , Luz Roja , Clorofila/metabolismo , Transcriptoma , Fotosíntesis , Azúcares , Carbono
5.
BMC Plant Biol ; 24(1): 595, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914931

RESUMEN

BACKGROUND: Monoterpenes are among the most important volatile aromatic compounds contributing to the flavor and aroma of grapes and wine. However, the molecular basis of monoterpene biosynthesis has not yet been fully elucidated. RESULTS: In our study, transcriptomics and gas chromatography-mass spectrometry (GC-MS) were used to mine candidate genes and transcription factors involved in monoterpene biosynthesis between high-monoterpene and zero-monoterpene table grape cultivars. We found that monoterpene biosynthesis was positively correlated by the expression of five genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (VvDXSs), one encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (VvHDR), three hydroxy-3-methylglutaryl-CoA synthases (VvHMGSs) and one mevalonate kinase (VvMVK), whereas the expression of one isopentenyl diphosphate isomerase (VvIDI) and one 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) negatively correlated monoterpene biosynthesis. Of these genes, VvIDI was selected to validate its function in monoterpene accumulation through a transient overexpression experiment, and was shown to inhibit the biosynthesis of grape linalool and α-terpineol. Meanwhile, we found that a 64-amino acid extension sequence at the N-terminus can guide the VvIDI protein to target the chloroplast. CONCLUSIONS: The findings of this study should help to guide future functional analysis of key genes as well as mining the potential regulatory mechanism of monoterpene biosynthesis in grapes and grape products.


Asunto(s)
Isomerasas de Doble Vínculo Carbono-Carbono , Monoterpenos , Vitis , Vitis/genética , Vitis/enzimología , Vitis/metabolismo , Monoterpenos/metabolismo , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Hemiterpenos
6.
Planta ; 259(5): 99, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522063

RESUMEN

MAIN CONCLUSION: Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.


Asunto(s)
Vitis , Vitis/genética , Centrómero/genética , Citoplasma , Elementos Transponibles de ADN/genética , Histonas
7.
J Exp Bot ; 75(8): 2196-2213, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38174592

RESUMEN

Grapevine berry shrivel, a ripening disorder, causes significant economic losses in the worldwide wine and table grape industries. An early interruption in ripening leads to this disorder, resulting in shriveling and reduced sugar accumulation affecting yield and fruit quality. Loss of sink strength associated with berry mesocarp cell death is an early symptom of this disorder; however, potential internal or external triggers are yet to be explored. No pathogens have been identified that might cause the ripening syndrome. Understanding the underlying causes and mechanisms contributing to berry shrivel is crucial for developing effective mitigation strategies and finding solutions for other ripening disorders associated with climacteric and non-climacteric fruits. This review discusses alterations in the fruit ripening mechanism induced by berry shrivel disorder, focusing primarily on sugar transport and metabolism, cell wall modification and cell death, and changes in the phytohormone profile. The essential open questions are highlighted and analyzed, thus identifying the critical knowledge gaps and key challenges for future research.


Asunto(s)
Frutas , Vitis , Frutas/metabolismo , Vitis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Azúcares/metabolismo
8.
J Exp Bot ; 75(10): 3026-3039, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38318854

RESUMEN

Grape white rot is a devastating fungal disease caused by Coniella diplodiella. The pathogen delivers effectors into the host cell that target crucial immune components to facilitate its infection. Here, we examined a secreted effector of C. diplodiella, known as CdE1, which has been found to inhibit Bax-triggered cell death in Nicotiana benthamiana plants. The expression of CdE1 was induced at 12-48 h after inoculation with C. diplodiella, and the transient overexpression of CdE1 led to increased susceptibility of grapevine to the fungus. Subsequent experiments revealed an interaction between CdE1 and Vitis davidii cysteine-rich receptor-like kinase 10 (VdCRK10) and suppression of VdCRK10-mediated immunity against C. diplodiella, partially by decreasing the accumulation of VdCRK10 protein. Furthermore, our investigation revealed that CRK10 expression was significantly higher and was up-regulated in the resistant wild grapevine V. davidii during C. diplodiella infection. The activity of the VdCRK10 promoter is induced by C. diplodiella and is higher than that of Vitis vitifera VvCRK10, indicating the involvement of transcriptional regulation in CRK10 gene expression. Taken together, our results highlight the potential of VdCRK10 as a resistant gene for enhancing white rot resistance in grapevine.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/microbiología , Vitis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hypocreales/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
9.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621715

RESUMEN

AIMS: To compare the species diversity and composition of indigenous yeast communities of hybrid grapes from conventionally and organically cultivated vineyards of an emerging cool-climate wine producing region. METHODS AND RESULTS: Illumina MiSeq sequences from L'Acadie blanc grape musts were processed and filtered to characterize indigenous yeast communities in organic and conventional vineyards of the Annapolis Valley wine region in Nova Scotia, Canada. While cultivation practice was not associated with yeast diversity or species richness, there was a strong effect on yeast community composition, with conventional vineyards characterized by higher proportions of Sporidiobolales and Filobasidium magnum, and organic vineyards supporting Filobasidium species other than F. magnum and higher proportions of Symmetrospora. There was also variation in yeast community composition among individual vineyards, and from year to year. CONCLUSIONS: This is the first comprehensive assessment of yeasts associated with hybrid grapes grown using different cultivation practices in a North American cool climate wine region. Communities were dominated by basidiomycete yeasts and species composition of these yeasts differed significantly between vineyards employing organic and conventional cultivation practices. The role of basidiomycete yeasts in winemaking is not well understood, but some species may influence wine characteristics.


Asunto(s)
Vitis , Vino , Levaduras , Vitis/microbiología , Vino/microbiología , Vino/análisis , Levaduras/genética , Levaduras/clasificación , Levaduras/aislamiento & purificación , Nueva Escocia , Granjas , Agricultura Orgánica
10.
Phytopathology ; 114(2): 368-377, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37606323

RESUMEN

Fungicide resistance is a limiting factor in sustainable crop production. General resistance management strategies such as rotation and mixtures of fungicides with different modes of action have been proven to be effective in many studies, but guidance on fungicide dose or application timing for resistance management remains unclear or debatable. In this study, Botrytis cinerea and the high-risk fungicide fenhexamid were used to determine the effects of fungicide dose, mixing partner, and application timing on resistance selection across varied frequencies of resistance via detached fruit assays. The results were largely consistent with the recent modeling studies that favored the use of the lowest effective fungicide dose for improved resistance management. In addition, even 10% resistant B. cinerea in the population led to about a 40% reduction of fenhexamid efficacy. Overall, our findings show that application of doses less than the fungicide label dose, mixture with the low-risk fungicide captan, and application postinfection seem to be the most effective management strategies in our controlled experimental settings. This somewhat contradicts the previous assumption that preventative sprays help resistance management.


Asunto(s)
Amidas , Botrytis , Fungicidas Industriales , Vitis , Captano/farmacología , Fungicidas Industriales/farmacología , Frutas , Enfermedades de las Plantas/prevención & control
11.
Phytopathology ; 114(5): 1068-1074, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105240

RESUMEN

Succinate dehydrogenase inhibitor (SDHI) fungicides are the most commonly and effectively used class of fungicides for controlling gray mold. Among them, only boscalid has been registered in China for controlling grape gray mold, whereas isofetamid and pydiflumetofen are two new SDHI fungicides that have demonstrated high efficacy against various fungal diseases. However, the sensitivity of Botrytis cinerea isolates from vineyards in China to these three fungicides is currently unknown. In this study, the sensitivity of 55 B. cinerea isolates from vineyards to boscalid, isofetamid, and pydiflumetofen was determined, with the effective concentrations for inhibiting 50% of spore germination (EC50) values ranging from 1.10 to 393, 0.0300 to 42.0, and 0.0990 to 25.5 µg ml-1, respectively. The resistance frequencies for boscalid, isofetamid, and pydiflumetofen were 60.0, 7.2, and 12.8%, respectively. Three mutations (H272R, H272Y, and P225F) were detected in the SdhB subunit, with H272R being the most prevalent (75.7%), followed by H272Y (16.2%) and P225F (8.1%). All three mutations are associated with resistance to boscalid, and of them, H272R mutants exhibited high resistance. Only P225F and H272Y mutants exhibited resistance to isofetamid and pydiflumetofen, respectively. A weakly positive cross-resistance relationship was observed between boscalid and pydiflumetofen (r = 0.38, P < 0.05). Additionally, the H272R mutants showed no significant fitness costs, whereas the remaining mutants exhibited reduced mycelial growth (P225F) and sporulation (H272Y and P225F). These results suggest that isofetamid and pydiflumetofen are effective fungicides against B. cinerea in vineyards, but appropriate rotation strategies must be implemented to reduce the selection of existing SDHI-resistant isolates.


Asunto(s)
Compuestos de Bifenilo , Botrytis , Farmacorresistencia Fúngica , Fungicidas Industriales , Niacinamida , Enfermedades de las Plantas , Vitis , Botrytis/efectos de los fármacos , Botrytis/genética , Fungicidas Industriales/farmacología , China , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Compuestos de Bifenilo/farmacología , Farmacorresistencia Fúngica/genética , Niacinamida/análogos & derivados , Niacinamida/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/antagonistas & inhibidores , Esporas Fúngicas/efectos de los fármacos , Benzamidas/farmacología , Piridinas/farmacología , Granjas , Mutación , Norbornanos , Pirazoles
12.
Phytopathology ; 114(6): 1226-1236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38205803

RESUMEN

A phenomenon of pathogenicity attenuation of Plasmopara viticola was consistently observed during its subculture on grape. To clarify the causes of attenuated pathogenicity of P. viticola, culturable microbes were isolated from the P. viticola mass (mycelia, sporangiophores, and sporangia) in each generation and tested for their biocontrol efficacies on grape downy mildew (GDM). The results showed that the incidence of GDM decreased with the increase in the number of subculture times on both vineyard-collected leaves and grape leaves from in vitro-grown seedlings. The number of culturable microbial taxa on the surface of P. viticola decreased, whereas the population densities of four specific strains (i.e., K2, K7, P1, and P5) increased significantly with the increase in subculture times. Compared with the control, the biocontrol efficacies of the bacterial strain K2 reached 87.5%, and those of both fungal strains P1 and P5 reached 100.0%. Based on morphological characteristics and molecular sequences, strains K2, P1, and P5 were identified as Curtobacterium herbarum, Thecaphora amaranthi, and Acremonium sclerotigenum, respectively, and these three strains survived very well and multiplied on the surface of P. viticola. As the number of times P. viticola was subcultured increased, all three of these strains became the predominant strains, leading to greater P. viticola inhibition, attenuated P. viticola pathogenicity, and effective GDM biological control. To the best of our knowledge, this is the first report of C. herbarum and T. amaranthi having biological control activity against GDM.


Asunto(s)
Oomicetos , Enfermedades de las Plantas , Vitis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Oomicetos/patogenicidad , Oomicetos/fisiología , Vitis/microbiología , Hojas de la Planta/microbiología , Agentes de Control Biológico , Control Biológico de Vectores , Virulencia
13.
Phytopathology ; 114(2): 464-473, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37565813

RESUMEN

Frequent fungicide applications are required to manage grapevine powdery mildew (Erysiphe necator). However, this practice is costly and has led to widespread fungicide resistance. A method of monitoring in-field fungicide efficacy could help growers maximize spray-interval length, thereby reducing costs and the rate of fungicide resistance emergence. The goal of this study was to evaluate if hyperspectral sensing in the visible to shortwave infrared range (400 to 2,400 nm) can quantify foliar fungicide efficacy on grape leaves. Commercial formulations of metrafenone, Bacillus mycoides isolate J (BmJ), and sulfur were applied on Chardonnay grapevines in vineyard or greenhouse settings. Foliar reflectance was measured with handheld hyperspectral spectroradiometers at multiple days post-application. Fungicide efficacy was estimated as a proxy for fungicide residue and disease control measured with the Blackbird microscopy imaging robot. Treatments could be differentiated from the untreated control with an accuracy of 73.06% for metrafenone, 67.76% for BmJ, and 94.10% for sulfur. The change in spectral reflectance was moderately correlated with the cube root of the area under the disease progress curve for metrafenone- and sulfur-treated samples (R2 = 0.38 and 0.36, respectively) and with sulfur residue (R2 = 0.42). BmJ treatment impacted foliar physiology by enhancing the leaf mass/area and reducing the nitrogen and total phenolic content as estimated from spectral reflectance. The results suggest that hyperspectral sensing can be used to monitor in-situ fungicide efficacy, and the prediction accuracy depends on the fungicide and the time point measured. The ability to monitor in-situ fungicide efficacy could facilitate more strategic fungicide applications and promote sustainable grapevine protection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Bacillus , Benzofenonas , Fungicidas Industriales , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Azufre
14.
Plant Cell Rep ; 43(6): 136, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709311

RESUMEN

KEY MESSAGE: In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Vitis , Vitis/genética , Vitis/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Pigmentación/genética , Frutas/genética , Frutas/metabolismo , Alelos
15.
Plant Cell Rep ; 43(6): 151, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802546

RESUMEN

KEY MESSAGE: The VaBAM3 cloned from Vitis amurensis can enhance the cold tolerance of overexpressed plants, but VaBAM3 knock out by CRISPR/Cas9 system weakened grape callus cold tolerance. In grape production, extreme cold conditions can seriously threaten plant survival and fruit quality. Regulation of starch content by ß-amylase (BAM, EC: 3.2.1.2) contributes to cold tolerance in plants. In this study, we cloned the VaBAM3 gene from an extremely cold-tolerant grape, Vitis amurensis, and overexpressed it in tomato and Arabidopsis plants, as well as in grape callus for functional characterization. After exposure to cold stress, leaf wilting in the VaBAM3-overexpressing tomato plants was slightly less pronounced than that in wild-type tomato plants, and these plants were characterized by a significant accumulation of autophagosomes. Additionally, the VaBAM3-overexpressing Arabidopsis plants had a higher freezing tolerance than the wild-type counterparts. Under cold stress conditions, the activities of total amylase, BAM, peroxidase, superoxide dismutase, and catalase in VaBAM3-overexpressing plants were significantly higher than those in the corresponding wild-type plants. Furthermore, sucrose, glucose, and fructose contents in these lines were similarly significantly higher, whereas starch contents were reduced in comparison to the levels in the wild-type plants. Furthermore, we detected high CBF and COR gene expression levels in cold-stressed VaBAM3-overexpressing plants. Compared with those in VaBAM3-overexpressing grape callus, the aforementioned indicators tended to change in the opposite direction in grape callus with silenced VaBAM3. Collectively, our findings indicate that heterologous overexpression of VaBAM3 enhanced cold tolerance of plants by promoting the accumulation of soluble sugars and scavenging of excessive reactive oxygen species. These findings provide a theoretical basis for the cultivation of cold-resistant grape and support creation of germplasm resources for this purpose.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Plantones , Vitis , Vitis/genética , Vitis/fisiología , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Frío , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Azúcares/metabolismo , beta-Amilasa/genética , beta-Amilasa/metabolismo , Almidón/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología
16.
Plant Cell Rep ; 43(8): 194, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008131

RESUMEN

KEY MESSAGE: The VlLOG11 mediates the cytokinin signaling pathway to regulate grape fruit setting. Fruit set, as an accepted agronomic trait, is inextricably linked with fruit quality and yield. Previous studies have demonstrated that exogenous treatment with the synthetic cytokinin analog, forchlorfenuron (CPPU), significantly enhances fruit set. In this study, a significant reduction in endogenous cytokinins was found by measuring the content of cytokinins in young grape berries after CPPU treatment. LONELY GUYs (VlLOGs), a key cytokinin-activating enzyme working in the biosynthesis pathway of cytokinins, exhibited differential expression. Some differentially expressed VlLOGs genes were presented by RNA seq data and their functions and regulation patterns were further investigated. The results showed that VlLOG11 was differentially expressed in young grape berries after CPPU treatment. Overexpression of VlLOG11 in tomato increases the amount of fruit set, and upregulated the expression of genes associated with cytokinin signaling including SlHK4, SlHK5, SlHP3, SlHP4, SlPHP1, SlPHP2. VlMYB4 and VlCDF3 could regulate the expression of VlLOG11 by directly binding to its promoter in young grape berries during fruit set. These results strongly demonstrated that VlMYB4/VlCDF3-VlLOG11 regulatory module plays a key role in the process of fruit setting in grape. This provided a basis for the molecular mechanism of VlLOG11-mediated cytokinin biosynthesis in young grape fruit set.


Asunto(s)
Citocininas , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Regiones Promotoras Genéticas , Vitis , Vitis/genética , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Citocininas/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Compuestos de Fenilurea/farmacología , Transducción de Señal/genética , Piridinas
17.
Metab Brain Dis ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900359

RESUMEN

Silicon dioxide nanoparticles (SiO2-NPs) can be found in many products, such as composites, paints, ceramics, consumer products, and food additives. We recently demonstrated that via breastfeeding, SiO2-NPs transfer to the offspring's brain, interfering negatively with hippocampus development. In this work, we evaluated the protective effect of grape seed extract (GSE) against the adverse effects of SiO2-NPs. After delivery, animals were administered 25 mg/kg SiO2-NPs with/without GSE (300 mg/kg) for 20 days (from 2nd to 21st days post-delivery) by gavage. SiO2-NPs increased malondialdehyde concentration and decreased antioxidant activity in the offspring's hippocampi. The mean number of dark neurons (DNs) was significantly higher in the hippocampi of the SiO2-NPs group, whereas the mean number of DCX + cells was significantly lower than in the control group. The offspring in the SiO2-NPs groups had a weak cognitive performance in adulthood. Interestingly, these adverse effects of SiO2-NPs were alleviated in the GSE-treated groups. Therefore, GSE can attenuate the damaging effects of maternal exposure to SiO2-NPs during lactation.

18.
Anim Biotechnol ; 35(1): 2331640, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38526422

RESUMEN

The present study was carried out to evaluate the effects of dietary vitamin E (VE) or grape seed extract (GSE) on the growth performance and antioxidant function of broilers. Two hundred sixteen broiler chicks were randomly assigned to 3 diets: diet supplemented with oxidized rice bran oil (CN group), CN group with 25 mg/kg VE or 100 mg/kg GSE. Dietary VE or GSE improved the growth performance, reverted the disturbed levels of liver antioxidant enzymes, and reduced liver damage of broilers fed oxidized rice bran oil. The mRNA data showed that supplementation of VE or GSE enhanced the antioxidant capacity of the broiler liver through activation of the Keap1-Nrf2/ARE signaling pathway. The results suggested that VE and GSE can increase weight gain, improve the oxidative status, and alleviate liver injury in broiler chicken fed oxidized rice bran oil.


Asunto(s)
Antioxidantes , Extracto de Semillas de Uva , Animales , Antioxidantes/farmacología , Vitamina E/farmacología , Extracto de Semillas de Uva/farmacología , Pollos , Proteína 1 Asociada A ECH Tipo Kelch , Aceite de Salvado de Arroz , Factor 2 Relacionado con NF-E2 , Suplementos Dietéticos
19.
Phytother Res ; 38(7): 3583-3593, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719548

RESUMEN

In recent years, an increase in the incidence of liver diseases has been reported all over the world. This study aims to comprehensively summarize and quantitatively analyze the existing evidence concerning the effectiveness of grape-derived products on liver enzymes through a systematic review and meta-analytic approach. PubMed, Scopus, Cochrane Library, and ISI Web of Science were comprehensively searched until January 2024. Articles that reported the effect of grape-derived products on serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels were included. Weighted mean differences (WMDs) were pooled using a random-effects model. Nine studies were included in the meta-analysis. The results revealed that grape-derived products did not significantly change the concentrations of ALT (WMD: -2.70 IU/L, 95% CI: -6.14 to 0.75, p = 0.12), and AST (WMD: -1.42 IU/L, 95% CI: -3.54 to 0.70, p = 0.18). However, a significant reduction was observed in serum ALP levels (WMD: -5.49 IU/L, 95% CI: -9.57 to -1.4, p = 0.008). The present findings suggest that grape-derived products positively influence serum ALP levels among adults. However, a more comprehensive decision necessitates additional studies.


Asunto(s)
Alanina Transaminasa , Fosfatasa Alcalina , Aspartato Aminotransferasas , Hígado , Ensayos Clínicos Controlados Aleatorios como Asunto , Vitis , Vitis/química , Fosfatasa Alcalina/sangre , Humanos , Aspartato Aminotransferasas/sangre , Alanina Transaminasa/sangre , Hígado/enzimología , Extractos Vegetales/farmacología
20.
Lasers Med Sci ; 39(1): 47, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277009

RESUMEN

Living organisms, particularly humans, frequently encounter microorganisms such as bacteria, fungi, and viruses in their surroundings. Silver nanoparticles are widely used in biomedical devices because of their antibacterial and antiviral properties. The study evaluates the efficacy of red laser and silver nanoparticles from grape seed extract (AgNPs-GSE) in reducing Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, which cause infections. The sample comprised three groups: a control group without laser irradiation (T0), Escherichia coli samples (A1 and A2) irradiated with a 405-nm diode laser at different times and concentrations of silver nanoparticles, and Staphylococcus aureus samples (A3 and A4) illuminated with a 405-nm diode laser at different times and concentrations. Bacteria in groups A2 and A4 were treated with a photosensitizer (PS) made from grape seed extracts, incubated for 10 min, and then irradiated for 90, 120, 150, and 180 s. The samples were cultured on TSA media, set at 37 °C, counted using a Quebec colony counter, and analyzed using ANOVA and Tukey tests with a significance level of p < 0.05. The study illustrated that the combination of 10 µl of AgNPs-GSE, exposure to a red laser at 405 nm, and an energy density of 3.44 J/cm2 effectively photoinactivated both Escherichia coli and Staphylococcus aureus bacteria. For Escherichia coli bacteria irradiated for 180 s with concentrations of 1 mM, 1.5 mM, and 2 mM AgNPs-GSE, bacterial viability decreased by 64.50%, 70.74%, and 79.53%, respectively. Similarly, Staphylococcus aureus bacteria, subjected to irradiation for 180 s with concentrations of 1 mM, 1.5 mM, and 2 mM AgNPs-GSE, demonstrated reductions in bacterial viability by 70.23%, 73.47%, and 85.04%, respectively. The findings from the present study indicate that at an energy density of 3.44 J/cm2, it was possible to inactivate Escherichia coli by 79.53% and Staphylococcus aureus by 85.04%.


Asunto(s)
Extracto de Semillas de Uva , Nanopartículas del Metal , Humanos , Plata/farmacología , Staphylococcus aureus , Extracto de Semillas de Uva/farmacología , Escherichia coli , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Bacterias , Rayos Láser , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA