Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 135: 59-72, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35331626

RESUMEN

Histone variants represent chromatin components that diversify the structure and function of the genome. The variants of H2A, primarily H2A.X, H2A.Z and macroH2A, are well-established participants in DNA damage response (DDR) pathways, which function to protect the integrity of the genome. Through their deposition, post-translational modifications and unique protein interaction networks, these variants guard DNA from endogenous threats including replication stress and genome fragility as well as from DNA lesions inflicted by exogenous sources. A growing body of work is now providing a clearer picture on the involvement and mechanistic basis of H2A variant contribution to genome integrity. Beyond their well-documented role in gene regulation, we review here how histone H2A variants promote genome stability and how alterations in these pathways contribute to human diseases including cancer.


Asunto(s)
Cromatina , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Genoma , Procesamiento Proteico-Postraduccional/genética , ADN/genética
2.
Semin Cell Dev Biol ; 135: 35-42, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35570098

RESUMEN

H2A variants are histones that carry out specialized nucleosome function during the eukaryote genome packaging. Most genes encoding H2A histone variants arose in the distant past, and have highly conserved domains and structures. Yet, novel H2A variants have continued to arise throughout the radiation of eukaryotes and disturbed the apparent tranquility of nucleosomes. These species-specific H2A variants contributed to the functional diversification of nucleosomes through changes in both their structure and expression patterns. In this short review, we discuss the evolutionary trajectories of these histone renegades in plants and animal genomes.


Asunto(s)
Histonas , Nucleosomas , Animales , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Plantas/genética , Plantas/metabolismo , Genoma , Evolución Biológica
3.
Front Immunol ; 13: 939464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898515

RESUMEN

In teleost fish, the nucleotide polymorphisms of histone H2A significantly affect the resistance or susceptibility of zebrafish to Edwardsiella piscicida infection. Whether histone H2A variants can enhance the resistance of grass carp to Flavobacterium columnare infection remains unclear. Here, the effects of 7 previously obtained variants (gcH2A-1~gcH2A-7) and 5 novel histone H2A variants (gcH2A-11, gcH2A-13~gcH2A-16) in response to F. columnare infection were investigated. It was found that these histone H2A variants could be divided into type I and II. Among them, 5 histone H2A variants had no any effects on the F. columnare infection, however 7 histone H2A variants had antibacterial activity against F. columnare infection. The gcH2A-4 and gcH2A-11, whose antibacterial activity was the strongest in type I and II histone H2A variants respectively, were picked out for yeast expression. Transcriptome data for the samples from the intestines of grass carp immunized with the engineered Saccharomyces cerevisiae expressing PYD1, gcH2A-4 or gcH2A-11 revealed that 5 and 12 immune-related signaling pathways were significantly enriched by gcH2A-4 or gcH2A-11, respectively. For the engineered S. cerevisiae expressing gcH2A-4, NOD-like receptor and Toll-like receptor signaling pathways were enriched for up-regulated DEGs. Besides NOD-like receptor and Toll-like receptor signaling pathways, the engineered S. cerevisiae expressing gcH2A-11 also activated Cytosolic DNA-sensing pathway, RIG-I-like receptor signaling pathway and C-type lectin receptor signaling pathway. Furthermore, grass carp were immunized with the engineered S. cerevisiae expressing PYD1, gcH2A-4 or gcH2A-11 for 1 month and challenged with F. columnare. These grass carp immunized with gcH2A-4 or gcH2A-11 showed lower mortality and fewer numbers of F. columnare than did the control group. All these results suggest that gcH2A-4 and gcH2A-11 play important roles in evoking the innate immune responses and enhancing disease resistance of grass carp against F. columnare infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Flavobacteriaceae , Animales , Antibacterianos , Carpas/genética , Resistencia a la Enfermedad/genética , Enfermedades de los Peces/genética , Enfermedades de los Peces/prevención & control , Flavobacterium , Histonas , Proteínas NLR , Saccharomyces cerevisiae , Receptores Toll-Like , Pez Cebra
4.
Cancer Lett ; 396: 42-52, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28288875

RESUMEN

Proliferation and differentiation are controlled through chromatin remodelling. Therefore, there is an enormous biological significance and clinical value in understanding how specific signalling pathways are affected by histone replacement in the nucleosome. In this work, mass spectrometry was used to screen HC11 mammary epithelial cells for changes in histone levels throughout cell differentiation. The canonical histone isoform Histone H2A type 2-C (Hist2h2ac) was found only in undifferentiated/proliferating cells. Hist2h2ac mRNA was induced by EGF, specifically in the CD24+/CD29hi/DC44hi cell subpopulation. Hist2h2ac mRNA was increased by MEK1/2 or PI3-K activation in HC11 and EpH4 mammary epithelial cells, and in MC4-L2 and T47-D breast cancer cells. Hist2h2ac silencing inhibited EGF-induced Zeb-1 expression and E-cadherin down-regulation, and this effect was reverted by Hist2h2ac re-expression. Notably, silencing of Hist2h2ac increased EGFR, ERBB2, and ERK1/2 activation but did not allow EGF-induced proliferation. HIST2H2AC was expressed in all breast cancer molecular subtypes and found altered in 17% breast cancers, being 16.8% of the cases related to HIST2H2AC gene amplification and/or mRNA upregulation. In summary, this is the first study that identifies a canonical histone isoform -Hist2h2ac-downstream of the EGFR pathway, regulating oncogenic signalling and thereby contributing to deregulation of target genes.


Asunto(s)
Neoplasias de la Mama/patología , Histonas/metabolismo , Mama/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/patología , Transición Epitelial-Mesenquimal , Femenino , Histonas/genética , Humanos , Espectrometría de Masas , Isoformas de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA