Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 554-565, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038362

RESUMEN

Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Antivirales , Líquido Cefalorraquídeo/metabolismo , Proteínas de la Membrana/genética
2.
Am J Hum Genet ; 108(7): 1350-1355, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34115965

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, and results are publicly available through the Regeneron Genetics Center COVID-19 Results Browser.


Asunto(s)
COVID-19/diagnóstico , COVID-19/genética , Secuenciación del Exoma , Exoma/genética , Predisposición Genética a la Enfermedad , Hospitalización/estadística & datos numéricos , COVID-19/inmunología , COVID-19/terapia , Femenino , Humanos , Interferones/genética , Masculino , Pronóstico , SARS-CoV-2 , Tamaño de la Muestra
3.
J Virol ; 97(1): e0087222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633408

RESUMEN

The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.


Asunto(s)
Evolución Molecular , Señales de Exportación Nuclear , Proteínas de Unión al ARN , Ubiquitina-Proteína Ligasas , Animales , Proteínas Cullin/metabolismo , Interferones/genética , ARN Viral/genética , Replicación Viral/fisiología , Proteínas de Unión al ARN/genética , Ubiquitina-Proteína Ligasas/genética
4.
Hepatol Res ; 54(1): 4-23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37906585

RESUMEN

In 2018, there was a hepatitis A outbreak in Japan, and hepatitis A virus (HAV) infection is considered a sexually transmitted disease. In general, patients with hepatitis A should be given attention, and this disease should be prevented more than ever. The Japan Agency for Medical Research and Development (AMED) Hepatitis A and E viruses (HAV and HEV) Study Group has worked on the project to create "Recent Advances in Hepatitis A Virus (HAV) Research and Clinical Practice Guidelines for HAV Infection in Japan". The group consists of expert hepatologists and virologists who gathered at virtual meeting on August 5, 2023. Data about the pathogenesis, infection routes, diagnosis, complications, several factors for the severities, vaccination, and current and future treatments for hepatitis A were discussed and debated for a draft version. The participants assessed the quality of cited studies. The finalized recommendations are presented in this review. The recent advances in HAV research and clinical practice for HAV infection in Japan, have been reviewed by the AMED HAV and HEV Study Group.

5.
Molecules ; 29(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338448

RESUMEN

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Asunto(s)
Herpesvirus Humano 1 , Colforsina/farmacología , Colforsina/química , Catepsina L , Simulación del Acoplamiento Molecular , Herpesvirus Humano 1/metabolismo , Antivirales/farmacología , Antivirales/química
6.
J Hepatol ; 79(3): 645-656, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121436

RESUMEN

BACKGROUND & AIMS: Hepatitis A virus (HAV) infections are considered not to trigger innate immunity in vivo, in contrast to hepatitis C virus (HCV). This lack of induction has been imputed to strong interference by HAV proteases 3CD and 3ABC. We aimed to elucidate the mechanisms of immune activation and counteraction by HAV and HCV in vivo and in vitro. METHODS: Albumin-urokinase-type plasminogen activator/severe combined immunodeficiency (Alb/uPA-SCID) mice with humanised livers were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by Toll-like receptor 3 and retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5), respectively. Cleavage of the adaptor proteins TIR-domain-containing adapter-inducing interferon-ß (TRIF) and mitochondrial antiviral-signalling protein (MAVS) was analysed by transient and stable expression of HAV and HCV proteases and virus infection. RESULTS: We detected similar levels of interferon-stimulated gene induction in hepatocytes of HAV- and HCV-infected mice with humanised liver. In cell culture, HAV induced interferon-stimulated genes exclusively upon MDA5 sensing and depended on LGP2 (laboratory of genetics and physiology 2). TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF cleavage was not detected. CONCLUSIONS: HAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by proteolytic cleavage. HCV activates Toll-like receptor 3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes to HCV-induced antiviral responses in hepatocytes. Our results shed new light on the induction of innate immunity and counteraction by HAV and HCV. IMPACT AND IMPLICATIONS: Understanding the mechanisms that determine the differential outcomes of HAV and HCV infections is crucial for the development of effective therapies. Our study provides insights into the interplay between these viruses and the host innate immune response in vitro and in vivo, shedding light on previously controversial or only partially investigated aspects. This knowledge could tailor the development of new strategies to combat HCV persistence, as well as improve our understanding of the factors underlying successful HAV clearance.


Asunto(s)
Hepatitis A , Hepatitis C , Evasión Inmune , Inmunidad Innata , Virus de la Hepatitis A , Hepacivirus , Animales , Ratones , Ratones SCID
7.
J Virol ; 96(23): e0149622, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36354341

RESUMEN

Although hepatitis A virus (HAV) is associated only with acute hepatitis in humans, HAV RNA persists within the liver for months following resolution of liver inflammation and cessation of fecal virus shedding in chimpanzees and murine models of hepatitis A. Here, we confirm striking differences in the kinetics of HAV RNA clearance from liver versus serum and feces in infected Ifnar1-/- mice and investigate the nature of viral RNA persisting in the liver following normalization of serum alanine aminotransferase (ALT) levels. Fecal shedding of virus produced in hepatocytes declined >3,000-fold between its peak at day 14 and day 126, whereas intrahepatic HAV RNA declined only 32-fold by day 154. Viral RNA was identified within hepatocytes 3 to 4 months after inoculation and was associated with membranes, banding between 1.07 and 1.14 g/cm3 in isopycnic iodixanol gradients. Gradient fractions containing HAV RNA demonstrated no infectivity when inoculated into naive mice but contained neutralizing anti-HAV antibody. Depleting CD4+ or CD8+ T cells at this late point in infection had no effect on viral RNA abundance in the liver, whereas clodronate-liposome depletion of macrophages between days 110 and 120 postinoculation resulted in a striking recrudescence of fecal virus shedding and the reappearance of viral RNA in serum coupled with reductions in intra-hepatic Ifnγ, Tnfα, Ccl5, and other chemokine transcripts. Our data suggest that replication-competent HAV RNA persists for months within the liver in the presence of neutralizing antibody following resolution of acute hepatitis in Ifnar1-/- mice and that macrophages play a key role in viral control late in infection. IMPORTANCE HAV RNA persists in the liver of infected chimpanzees and interferon receptor-deficient Ifnar1-/- mice for many months after neutralizing antibodies appear, virus has been cleared from the blood, and fecal virus shedding has terminated. Here, we show this viral RNA is located within hepatocytes and that the depletion of macrophages months after the resolution of hepatic inflammation restores fecal virus shedding and circulating viral RNA. Our study identifies an important role for macrophages in virus control following resolution of acute hepatitis A in Ifnar1-/- mice and may have relevance to relapsing hepatitis A in humans.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Macrófagos , Esparcimiento de Virus , Animales , Ratones , Linfocitos T CD8-positivos , Heces , Virus de la Hepatitis A/fisiología , Inflamación , Macrófagos/virología , Receptor de Interferón alfa y beta/genética , ARN Viral/genética , Ratones Noqueados
8.
J Virol ; 96(18): e0064622, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36040176

RESUMEN

Hepatitis A virus (HAV) infection is a major cause of acute viral hepatitis worldwide. Furthermore, HAV causes acute liver failure or acute-on-chronic liver failure. However, no potent anti-HAV drugs are currently available in the clinical situations. There have been some reports that amantadine, a broad-spectrum antiviral, suppresses HAV replication in vitro. Therefore, we examined the effects of amantadine and rimantadine, derivates of adamantane, on HAV replication, and investigated the mechanisms of these drugs. In the present study, we evaluated the effects of amantadine and rimantadine on HAV HM175 genotype IB subgenomic replicon replication and HAV HA11-1299 genotype IIIA replication in cell culture infection systems. Amantadine and rimantadine significantly inhibited HAV replication at the post-entry stage in Huh7 cells. HAV infection inhibited autophagy by suppressing the autophagy marker light chain 3 and reducing number of lysosomes. Proteomic analysis on HAV-infected Huh7 cells treated by amantadine and rimantadine revealed the changes of the expression levels in 42 of 373 immune response-related proteins. Amantadine and rimantadine inhibited HAV replication, partially through the enhancement of autophagy. Taken together, our results suggest a novel mechanism by which HAV replicates along with the inhibition of autophagy and that amantadine and rimantadine inhibit HAV replication by enhancing autophagy. IMPORTANCE Amantadine, a nonspecific antiviral medication, also effectively inhibits HAV replication. Autophagy is an important cellular mechanism in several virus-host cell interactions. The results of this study provide evidence indicating that autophagy is involved in HAV replication and plays a role in the HAV life cycle. In addition, amantadine and its derivative rimantadine suppress HAV replication partly by enhancing autophagy at the post-entry phase of HAV infection in human hepatocytes. Amantadine may be useful for the control of acute HAV infection by inhibiting cellular autophagy pathways during HAV infection processes.


Asunto(s)
Amantadina , Autofagia , Virus de la Hepatitis A , Hepatitis A , Rimantadina , Replicación Viral , Amantadina/farmacología , Amantadina/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Autofagia/efectos de los fármacos , Línea Celular , Hepatitis A/tratamiento farmacológico , Anticuerpos de Hepatitis A , Virus de la Hepatitis A/efectos de los fármacos , Humanos , Proteómica , Rimantadina/farmacología , Rimantadina/uso terapéutico , Replicación Viral/efectos de los fármacos
9.
J Viral Hepat ; 30(8): 685-693, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37309229

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. The association between prior hepatitis B virus (HBV), hepatitis A virus (HAV), hepatitis E virus (HEV) infection and NAFLD remains unclear. We utilized the 2017-2020 National Health and Nutrition Examination Survey (NHANES) and performed multivariable logistic regression analyses to examine the association of prior HBV, HAV and HEV infection with NAFLD, as well as high risk non-alcoholic steatohepatitis (NASH) and liver fibrosis. Our analysis included 2565 participants with available anti-HBc serology results, 1480 unvaccinated participants with anti-HAV results, and 2561 participants with anti-HEV results. Among participants with NAFLD, the age-adjusted prevalence of prior HBV, HAV and HEV infection was 3.48%, 32.08% and 7.45%, respectively. Prior infection with HBV, HAV and HEV was not associated with NAFLD (cut-off 285 dB/m) [aOR: 0.99 (95% CI, 0.77-1.29), 1.29 (95% CI, 0.95-1.75), and 0.94 (95% CI, 0.70-1.27), respectively] or high-risk NASH [aOR 0.72 (95% CI, 0.45-1.17), 0.92 (95% CI, 0.55-1.52), and 0.89 (95% CI, 0.41-1.94), respectively]. Participants with anti-HBc and anti-HAV seropositivity were more likely to have significant fibrosis [aOR: 1.53 (95% CI, 1.05-2.23) and 1.69 (95% CI, 1.16-2.47), respectively]. The odds of significant fibrosis are 53%, and 69% greater for participants with prior history of HBV and HAV infection. Healthcare providers should prioritize vaccination efforts and employ a tailored approach to NAFLD in patients with prior viral hepatitis and especially HBV or HAV infection to limit disease-related outcomes.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Virus de la Hepatitis E , Hepatitis E , Enfermedad del Hígado Graso no Alcohólico , Humanos , Virus de la Hepatitis B , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Encuestas Nutricionales , Anticuerpos de Hepatitis A , Factores de Riesgo , Hepatitis A/complicaciones , Hepatitis A/epidemiología , Hepatitis A/prevención & control , Hepatitis E/epidemiología , Cirrosis Hepática , Anticuerpos contra la Hepatitis B
10.
J Med Virol ; 95(11): e29185, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37916771

RESUMEN

In the spring of 2023, three Ukrainian war refugees from a municipal community shelter and a volunteer caregiver at an affiliated daycare center in Kiel, Germany, were diagnosed with infectious jaundice attributable to a single hepatitis A virus (HAV) subgenotype IA strain. Similar HAV sequences have been observed in Germany and other European countries for several years. One refugee and the volunteer required hospitalization. Four children were asymptomatically infected but excreted high levels of HAV ribonucleic acid in the stool. The infections were probably acquired in Germany, but a source could not be determined. The outbreak was contained through vaccination, increased hygiene, and education. The existing HAV vaccination recommendation for refugee shelter staff and volunteers should be consistently implemented.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Refugiados , Niño , Humanos , Hepatitis A/epidemiología , ARN Viral/genética , Virus de la Hepatitis A/genética , Brotes de Enfermedades , Alemania/epidemiología , Filogenia , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA