Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 72(3): 583-593.e4, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30293780

RESUMEN

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.


Asunto(s)
Variaciones en el Número de Copia de ADN/fisiología , ADN Circular/fisiología , ADN Ribosómico/fisiología , Variaciones en el Número de Copia de ADN/genética , Replicación del ADN/fisiología , ADN Circular/genética , ADN Circular/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/fisiología , Genómica , ARN Ribosómico/genética , Recombinación Genética/genética , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Crit Rev Biochem Mol Biol ; 57(5-6): 562-584, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36866565

RESUMEN

Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.


Asunto(s)
Bifidobacterium , Prebióticos , Lactante , Recién Nacido , Niño , Humanos , Bifidobacterium/genética , Bifidobacterium/metabolismo , Prebióticos/análisis , Leche Humana/química , Leche Humana/metabolismo , Polisacáridos/metabolismo , Carbohidratos/análisis , Genómica
3.
Yeast ; 41(6): 379-400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639144

RESUMEN

Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores
4.
J Nutr ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069270

RESUMEN

BACKGROUND: Multiple studies have demonstrated associations between the early-life gut microbiome and incidence of inflammatory and autoimmune disease in childhood. Although microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy. OBJECTIVES: In this study, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice. METHODS: Germ-free mice were inoculated with fecal slurries from Bifidobacterium longum subspecies infantis positive (BIP) or B. longum subspecies infantis negative (BIN) breastfed infants; half of the mice in each group were also supplemented with a pool of human milk oligosaccharides (HMOs) for 14 d. Cecal microbiome composition and metabolite production, systemic and mucosal immune outcomes, and intestinal morphology were assessed at the end of the study. RESULTS: The results showed that inoculation with a BIP microbiome results in a remarkably distinct microbial community characterized by higher relative abundances of cecal Clostridium senu stricto, Ruminococcus gnavus, Cellulosilyticum sp., and Erysipelatoclostridium sp. The BIP microbiome produced 2-fold higher concentrations of cecal butyrate, promoted branched short-chain fatty acid (SCFA) production, and further modulated serotonin, kynurenine, and indole metabolism relative to BIN mice. Further, the BIP microbiome increased the proportions of innate and adaptive immune cells in spleen, while HMO supplementation increased proliferation of mesenteric lymph node cells to phorbol myristate acetate and lipopolysaccharide and increased serum IgA and IgG concentrations. CONCLUSIONS: Different microbiome compositions and HMO supplementation can modulate SCFA and tryptophan metabolism and innate and adaptive immunity in young, healthy mice, with potentially important implications for early childhood health.

5.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768504

RESUMEN

Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid fraction in human milk after lactose and lipids. HMOs are in the forefront of research since they have been proven to possess beneficial health effects, especially on breast-fed neonates. Although HMO research is a trending topic nowadays, readily available analytical methods suitable for the routine investigation of HMOs are still incomplete. NMR spectroscopy provides detailed structural information that can be used to indicate subtle structural differences, particularly for isomeric carbohydrates. Herein, we propose an NMR-based method to identify the major isomeric HMOs containing GlcNAc and/or Neu5Ac building blocks utilizing their amide functionality. Experimental conditions were optimized (H2O:D2O 9:1 v/v solvent at pH 3.0) to obtain 1H-15N HSQC and 1H-15N HSQC-TOCSY NMR spectra of the aforementioned building blocks in HMOs. Four isomeric HMO pairs, LNT/LNnT, 3'SL/6'SL, LNFP II/LNFP III, and LSTa/LSTb, were investigated, and complete NMR resonance assignments were provided. In addition, 1H and 15N NMR resonances were found to be indicative of various linkages, thereby facilitating the distinction of isomeric tri-, tetra-, and pentasaccharide HMOs. The rapid growth of HMO products (from infant formulas and dietary supplements to cosmetics) undoubtedly requires expanding the range of applicable analytical methods. Thus, our work provides a 15N NMR-based method to advance this challenging field of carbohydrate analysis.


Asunto(s)
Lactancia Materna , Leche Humana , Lactante , Recién Nacido , Femenino , Humanos , Leche Humana/química , Oligosacáridos/química , Isomerismo , Espectroscopía de Resonancia Magnética
6.
Emerg Infect Dis ; 28(2): 338-346, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34906291

RESUMEN

Israel experienced a new wave of coronavirus disease during June 2021, six months after implementing a national vaccination campaign. We conducted 3 discrete analyses using data from a large health maintenance organization in Israel to determine whether IgG levels of fully vaccinated persons decrease over time, describe the relationship between IgG titer and subsequent PCR-confirmed infection, and compare PCR-confirmed infection rates by period of vaccination. Mean IgG levels steadily decreased over the 6-month period in the total tested population and in all age groups. An inverse relationship was found between IgG titer and subsequent PCR-positive infection. Persons vaccinated during the first 2 months of the campaign were more likely to become infected than those subsequently vaccinated. The vaccinated group >60 years of age had lower initial IgG levels and were at greater risk for infection. The findings support the decision to add a booster vaccine for persons >60 years of age.


Asunto(s)
Vacuna BNT162 , COVID-19 , Vacunas contra la COVID-19 , Sistemas Prepagos de Salud , Humanos , Israel/epidemiología , ARN Mensajero , Vacunación
7.
Biochem Biophys Res Commun ; 611: 46-52, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35477092

RESUMEN

When asynchronously growing cells suffer from nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase, the rDNA (rRNA gene) region is condensed in budding yeast Saccharomyces cerevisiae, which is executed by condensin and Cdc14 protein phosphatase. However, it is unknown whether these mitotic factors can condense the rDNA region in nutrient-starved interphase cells. Here, we show that condensin is not involved in TORC1 inactivation-induced rDNA condensation in G1 cells. Instead, the high-mobility group protein Hmo1 drove this process. The histone deacetylase Rpd3 and Cdc14, which repress rRNA transcription, were both required for the interphase rDNA condensation. Furthermore, interphase rDNA condensation necessitated CLIP and cohibin that tether rDNA to inner nuclear membranes. Finally, we showed that Hmo1, CLIP, Rpd3, and Cdc14 were required for survival in nutrient-starved G1 cells. Thus, this study disclosed novel features of interphase chromosome condensation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfatasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN , Proteínas del Grupo de Alta Movilidad/genética , Interfase , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos , Nutrientes , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Appl Environ Microbiol ; 88(1): e0148721, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34669436

RESUMEN

Akkermansia muciniphila is a mucin-degrading bacterium found in the human gut and is often associated with positive human health. However, despite being detected by as early as 1 month of age, little is known about the role of Akkermansia in the infant gut. Human milk oligosaccharides (HMOs) are abundant components of human milk and are structurally similar to the oligosaccharides that comprise mucin, the preferred growth substrate of human-associated Akkermansia. A limited subset of intestinal bacteria has been shown to grow well on HMOs and mucin. We therefore examined the ability of genomically diverse strains of Akkermansia to grow on HMOs. First, we screened 85 genomes representing the four known Akkermansia phylogroups to examine their metabolic potential to degrade HMOs. Furthermore, we examined the ability of representative isolates to grow on individual HMOs in a mucin background and analyzed the resulting metabolites. All Akkermansia genomes were equipped with an array of glycoside hydrolases associated with HMO deconstruction. Representative strains were all able to grow on HMOs with various efficiencies and growth yields. Strain CSUN-19, belonging to the AmIV phylogroup, grew to the highest level in the presence of fucosylated and sialylated HMOs. This activity may be partially related to the increased copy numbers and/or the enzyme activities of the α-fucosidases, α-sialidases, and ß-galactosidases. This study examines the utilization of individual purified HMOs by Akkermansia strains representing all known phylogroups. Further studies are required to examine how HMO ingestion influences gut microbial ecology in infants harboring different Akkermansia phylogroups. IMPORTANCE Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk and provide several benefits to developing infants, including the recruitment of beneficial bacteria to the human gut. Akkermansia strains are largely considered beneficial bacteria and have been detected in colostrum, breast milk, and young infants. A. muciniphila MucT, belonging to the AmI phylogroup, contributes to the HMO deconstruction capacity of the infant. Here, using phylogenomics, we examined the genomic capacities of four Akkermansia phylogroups to deconstruct HMOs. Indeed, each phylogroup contained differences in their genomic capacities to deconstruct HMOs, and representative strains of each phylogroup were able to grow using HMOs. These Akkermansia-HMO interactions potentially influence gut microbial ecology in early life, a critical time for the development of the gut microbiome and infant health.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Akkermansia , Femenino , Humanos , Lactante , Oligosacáridos , Verrucomicrobia
9.
Appl Environ Microbiol ; 88(2): e0170721, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34757822

RESUMEN

Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs), we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases, consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO-binding specificities of the family 1 solute-binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, these data indicate the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breastfed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies key gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.


Asunto(s)
Bifidobacterium pseudocatenulatum , Leche Humana , Bifidobacterium pseudocatenulatum/metabolismo , Femenino , Humanos , Hidrolasas/metabolismo , Lactante , Leche Humana/química , Oligosacáridos/metabolismo , alfa-L-Fucosidasa/química , alfa-L-Fucosidasa/genética , alfa-L-Fucosidasa/metabolismo
10.
J Appl Toxicol ; 42(10): 1671-1687, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35510931

RESUMEN

Human milk oligosaccharides, such as 3-fucosyllactose (3-FL), are bioactive components of breast milk associated with benefits for infant growth and development. Structurally identical compounds (human-identical milk oligosaccharides-HiMOs) can be produced using microbial fermentation, allowing their use in infant formula to increase its similarity with human milk. Toxicological studies are required to demonstrate safety of HiMOs and that of any impurities potentially carried over from the manufacturing process. Biotechnologically produced 3-FL was tested for potential genotoxicity (bacterial reverse mutation test and in vitro mammalian micronucleus test) and subchronic toxicity (90-day study with neonatal rats). In the 90-day study, 3-FL was administered by gavage to rats once daily from Day 7 of age, at doses up to 4000 mg/kg body weight (bw)/day (the maximum feasible dose), followed by a 4-week recovery period. Reference controls received 4000 mg/kg bw/day of oligofructose, an ingredient permitted for use in infant formula. Results for the genotoxicity studies were negative. In the 90-day study, there were no adverse effects of 3-FL on any of the parameters measured; thus, the no-observed-adverse-effect level (NOAEL) was 4000 mg/kg bw/day (the highest dose tested). These results support the safety of biotechnologically produced 3-FL for use in infant formula and other foods.


Asunto(s)
Leche Humana , Oligosacáridos , Animales , Femenino , Humanos , Lactante , Fórmulas Infantiles/toxicidad , Mamíferos , Pruebas de Mutagenicidad/métodos , Nivel sin Efectos Adversos Observados , Oligosacáridos/toxicidad , Ratas , Pruebas de Toxicidad Subcrónica
11.
J Dairy Sci ; 105(6): 4818-4828, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35400500

RESUMEN

The composition of the microbiome in the early stages of life can directly affect the health of developing infants, and prior evidence suggests that human milk oligosaccharides (HMO) are critical regulators in the maintenance of a healthy gut microbiota in infants. Herein, we conducted an analysis of the gut microbiota of 1-mo-old breastfed infants from Jining and Harbin, China, and a corresponding analysis of the HMO profiles in samples of maternal breast milk. Quantification of HMO was conducted via liquid chromatography-mass spectrometry, and bacterial DNA sequencing was employed for characterization of the fecal microbiota. The abundances of total neutral oligosaccharides, lactodifucotetraose, lacto-N-fucopentaose I, and disialyl-lacto-N-tetraose were significantly increased in samples from the Jining group relative to the Harbin group. Bifidobacterium were the predominant microbial species in infants from both Harbin and Jining, with these levels being significantly higher in the former set. Correlation analyses evaluating microbes and 19 different HMO indicated that HMO were beneficial to the development of the gut microbiota in young infants. The predominance of Bifidobacterium in these microbial communities suggests that their ability to efficiently utilize HMO can contribute to the homeostasis of the gut microflora, with breast milk-derived HMO being critical to the shaping of the gut microbiota in breastfed infants.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Animales , Bifidobacterium , Lactancia Materna , Femenino , Microbioma Gastrointestinal/genética , Humanos , Leche Humana/química , Oligosacáridos/análisis
12.
J Proteome Res ; 20(8): 3865-3874, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170688

RESUMEN

Human milk oligosaccharides (HMOs) have attracted much attention in recent years not only as a prebiotic factor but also in particular as an essential component of infant nutrition in relation to their impact on innate immunity. The backbone structures of complex HMOs generally contain single or repetitive lacto-N-biose (type 1) or lactosamine (type 2) units in either linear or branched chains extending from a lactose core. While all known branched structures originate from the 3,6-substitution of the lactosyl core galactose, we here describe a new class of HMOs that tentatively branch at the terminal galactose of 6'-galactosyllactose. Another novel feature of this class of HMOs was found in linear oligo-galactosyl chains linked to one of the N-acetylglucosamine (GlcNAc) branches. The novel structures exhibit general formulas with hexose versus hexosamine contents of 5/2 to 8/2 and can be designated as high-galactose (HG)-HMOs. In addition, up to three fucosyl residues are linked to the octa- to dodecasaccharides, which were detected in two human milk samples from the Lewis blood-group-defined donors. Structural analyses of methylated glycans and their alditols comprised matrix-assisted laser desorption ionization mass spectrometry, electrospray-(collision-induced dissociation) mass spectrometry and linkage analyses by gas chromatography-mass spectrometry of the derived partially methylated alditol acetates. Enzymatic degradation by the application of ß1-3,4-specific galactosidase supported the presence of terminal galactose-linked ß1-6 to one of the two GlcNAc branches. The mass spectrometry glycomic data have been deposited at the GlycoPOST archive with the data set identifier GPST000191 (Username: franz.hanisch@uni-koeln.de; Password: Soma1Dita2Carb. Watanabe, Y. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res.2021,49, D1523-D1528).


Asunto(s)
Acetilglucosamina , Leche Humana , Humanos , Lactante , Lactosa , Oligosacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Intern Med J ; 51(2): 268-271, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33631848

RESUMEN

The rapid evolution and wide applicability of genomic testing means that medical practitioners outside the field are not appropriately skilled to understand the utility of genomics for their patients. Rotating junior doctors through genomic medicine provides them with the hands-on experience necessary to understand the complexities in this field. In this study, we analysed the training experience of 12 hospital medical officers who rotated through genomic medicine at the Royal Melbourne Hospital. Here, we demonstrate that immersion in clinical genomics aids in mainstreaming genomics knowledge.


Asunto(s)
Genómica , Medicina , Curriculum , Hospitales , Humanos , Cuerpo Médico de Hospitales
14.
BMC Pediatr ; 21(1): 481, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717578

RESUMEN

BACKGROUND: The relationship between human milk oligosaccharides (HMO) and child growth has been investigated only insufficiently with ambiguous results. Therefore, this study examines potential influencing factors of HMO concentrations and how HMO are associated with child growth parameters. METHODS: Milk samples from the German LIFE Child cohort of healthy children were analyzed for 9 HMO. Putative associations with maternal and child cofactors and child height, head circumference and BMI between 3 months and 7 years of age were examined. Secretor status, defined as the presence of 2'-fucosyllactose, was investigated for associations with infant outcomes. RESULTS: Our population consisted of 21 (14.7%) non-secretor and 122 (85.3%) secretor mothers. Maternal age was significantly associated with higher 3'SL concentrations; gestational age was associated with LNT, 6'SL and LNFP-I. Pre-pregnancy BMI was negatively associated with LNnT only in non-secretors. The growth velocity of non-secretors' children was inversely associated with LNnT at 3 months to 1 year (R = 0.95 [0.90, 0.99], p = 0.014), 1 to 2 years (R = 0.80 [0.72, 0.88], p < 0.001) and 5 to 6 years (R = 0.71 [0.57, 0.87], p = 0.002). 2'FL was negatively associated with BMI consistently, reaching statistical significance at 3 months and 4 and 5 years. Children of non-secretors showed higher BMI at 3 months, 6 months, and 3, 6, and 7 years of age. CONCLUSION: We found that some associations between HMO and infant growth may extend beyond the infancy and breastfeeding periods. They highlight the importance of both maternal and infant parameters in the understanding of the underlying associations. TRIAL REGISTRATION: The study is registered with ClinicalTrial.gov: NCT02550236 .


Asunto(s)
Leche Humana , Oligosacáridos , Estatura , Lactancia Materna , Niño , Femenino , Humanos , Lactante , Madres , Embarazo
15.
J Biol Chem ; 294(31): 11701-11711, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31186348

RESUMEN

Bifidobacteria are exposed to substantial amounts of dietary ß-galactosides. Distinctive preferences for growth on different ß-galactosides are observed within Bifidobacterium members, but the basis of these preferences remains unclear. We previously described the first ß-(1,6)/(1,3)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04. This enzyme is relatively promiscuous, exhibiting only 5-fold higher efficiency on the preferred ß-(1,6)-galactobiose than the ß-(1,4) isomer. Here, we characterize the solute-binding protein (Bal6GBP) that governs the specificity of the ABC transporter encoded by the same ß-galactoside utilization locus. We observed that although Bal6GBP recognizes both ß-(1,6)- and ß-(1,4)-galactobiose, Bal6GBP has a 1630-fold higher selectivity for the former, reflected in dramatic differences in growth, with several hours lag on less preferred ß-(1,4)- and ß-(1,3)-galactobiose. Experiments performed in the presence of varying proportions of ß-(1,4)/ß-(1,6)-galactobioses indicated that the preferred substrate was preferentially depleted from the culture supernatant. This established that the poor growth on the nonpreferred ß-(1,4) was due to inefficient uptake. We solved the structure of Bal6GBP in complex with ß-(1,6)-galactobiose at 1.39 Å resolution, revealing the structural basis of this strict selectivity. Moreover, we observed a close evolutionary relationship with the human milk disaccharide lacto-N-biose-binding protein from Bifidobacterium longum, indicating that the recognition of the nonreducing galactosyl is essentially conserved, whereas the adjacent position is diversified to fit different glycosidic linkages and monosaccharide residues. These findings indicate that oligosaccharide uptake has a pivotal role in governing selectivity for distinct growth substrates and have uncovered evolutionary trajectories that shape the diversification of sugar uptake proteins within Bifidobacterium.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/crecimiento & desarrollo , Galactosidasas/metabolismo , Galactósidos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Bifidobacterium animalis/enzimología , Bifidobacterium animalis/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Galactosidasas/química , Galactósidos/química , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Especificidad por Sustrato
16.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396896

RESUMEN

Sialyllactose (SL) is a representative human milk oligosaccharide (HMO) of human breast milk. The roles of SL in infant brain development and immunity have been reported in previous studies. In this study, we identified the impact of SL on innate immunity. Our results showed that the administration of SL had significant efficacy on bacterial clearance in Pseudomonas aeruginosa K-infected mice. We also examined the role of SL in the human THP-1 macrophage-like cell line. SL effectively promoted receptor-mediated endocytosis and phagocytosis. Furthermore, SL accelerated the recruitment of Rac1 to the cell membrane, leading to the generation of reactive oxygen species for the elimination of phagocytosed bacteria. Our findings provide a new perspective on the role of SL in breast milk and suggest its application as a therapeutic agent to treat bacterial and viral infections.


Asunto(s)
Factores Inmunológicos/administración & dosificación , Lactosa/análogos & derivados , Fagocitosis/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Factores Inmunológicos/farmacología , Lactosa/administración & dosificación , Lactosa/farmacología , Masculino , Ratones Endogámicos BALB C , Modelos Biológicos , Células THP-1 , Resultado del Tratamiento
17.
Curr Genet ; 64(1): 131-135, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28831551

RESUMEN

Under conditions of nutrient limitation and cellular stress, or by addition of rapamycin, the mechanistic target of rapamycin complex 1 (mTORC1) is inhibited. This results in downregulation of genes that encode rRNA and ribosomal proteins. While most of the mTORC1 functions that have been previously characterized at a mechanistic level take place in the cytoplasm, nuclear roles have also been reported, including direct association of TOR kinase with rRNA genes. This review highlights the recent observation that Saccharomyces cerevisiae Tor1p also binds directly to the RNA polymerase II-transcribed gene encoding Hmo1p, a protein that is involved in communicating mTORC1 activity to downstream targets. A reduction in HMO1 mRNA levels in response to DNA damage or addition of rapamycin requires Tor1p, suggesting a role for TOR kinase in control of gene activity by direct binding to target genes. Potential targets for chromatin-bound Tor1p are discussed and the possibility that Tor1p similarly contributes to control of other genes linked to ribosome biogenesis is considered.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética , Cromatina/genética , Cromatina/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Activación Transcripcional
18.
Curr Genet ; 64(6): 1205-1213, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29713761

RESUMEN

The number of ribosomes and their activity need to be highly regulated because their function is crucial for the cell. Ribosome biogenesis is necessary for cell growth and proliferation in accordance with nutrient availability and other external and intracellular signals. High-mobility group B (HMGB) proteins are conserved from yeasts to human and are decisive in cellular fate. These proteins play critical functions, from the maintenance of chromatin structure, DNA repair, or transcriptional regulation, to facilitation of ribosome biogenesis. They are also involved in cancer and other pathologies. In this review, we summarize evidence of how HMGB proteins contribute to ribosome-biogenesis control, with special emphasis on a common nexus to the target of rapamycin (TOR) pathway, a signaling cascade essential for cell growth and proliferation from yeast to human. Perspectives in this field are also discussed.


Asunto(s)
Proliferación Celular/fisiología , Proteínas HMGB , Ribosomas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Animales , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Ribosomas/genética , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29500268

RESUMEN

Bifidobacterial carbohydrate metabolism has been studied in considerable detail for a variety of both plant- and human-derived glycans, particularly involving the bifidobacterial prototype strain Bifidobacterium breve UCC2003. We recently elucidated the metabolic pathways by which the human milk oligosaccharide (HMO) constituents lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT) and lacto-N-biose (LNB) are utilized by B. breve UCC2003. However, to date, no work has been carried out on the regulatory mechanisms that control the expression of the genetic loci involved in these HMO metabolic pathways. In this study, we describe the characterization of three transcriptional regulators and the corresponding operator and associated (inducible) promoter sequences, with the latter governing the transcription of the genetic elements involved in LN(n)T/LNB metabolism. The activity of these regulators is dependent on the release of specific monosaccharides, which are believed to act as allosteric effectors and which are derived from the corresponding HMOs targeted by the particular locus.IMPORTANCE Human milk oligosaccharides (HMOs) are a key factor in the development of the breastfed-infant microbiota. They function as prebiotics, selecting for a specific range of microbes, including a number of infant-associated species of bifidobacteria, which are thought to provide a range of health benefits to the infant host. While much research has been carried out on elucidating the mechanisms of HMO metabolism in infant-associated bifidobacteria, to date there is very little understanding of the transcriptional regulation of these pathways. This study reveals a multicomponent transcriptional regulation system that controls the recently identified pathways of HMO metabolism in the infant-associated Bifidobacterium breve prototype strain UCC2003. This not only provides insight into the regulatory mechanisms present in other infant-associated bifidobacteria but also provides an example of a network of sequential steps regulating microbial carbohydrate metabolism.


Asunto(s)
Bifidobacterium breve/genética , Regulación Bacteriana de la Expresión Génica , Leche Humana/microbiología , Oligosacáridos/metabolismo , Elementos Reguladores de la Transcripción/genética , Lactancia Materna , Humanos , Lactante , Recién Nacido , Redes y Vías Metabólicas , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA