RESUMEN
Hypsizygus marmoreus has abundant proteins and is a potential source for the development of bioactive peptides. However, currently, the research on the bioactive components of H. marmoreus mainly focuses on polysaccharides, and there is no relevant research on the preparation of bioactive peptides. In this article, an ultrasound-assisted extraction method was used to extract proteins from H. marmoreus, and then, four peptides with different molecular weight ranges were prepared through protease hydrolysis and molecular classification. The antioxidant and antibacterial activities were also studied. Under the optimal conditions, the extraction rate of H. marmoreus proteins was 53.6%. Trypsin exhibited the highest hydrolysis rate of H. marmoreus proteins. The optimal parameters for enzymatic hydrolysis were a substrate concentration of 3.7%, enzyme addition of 5700 U/g, pH value of 7, extraction temperature of 55 °C, and time of 3.3 h. Under these conditions, the peptide yield was 59.7%. The four types of H. marmoreus peptides were prepared by molecular weight grading. Among them, peptides with low molecular weight (<1 kDa) had stronger antioxidant and antibacterial activities. This study provides a theoretical basis for the efficient preparation of H. marmoreus peptides and the development of antioxidant and antibacterial peptide products.
Asunto(s)
Antibacterianos , Antioxidantes , Peso Molecular , Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Animales , Hidrólisis , Pruebas de Sensibilidad MicrobianaRESUMEN
BACKGROUND: A high concentration of CO2 will stagnate the development of the newly formed primordia of Hypsizygus marmoreus, hinder the development of the mushroom cap, thereby inhibiting the normal differentiation of the fruiting body. Moreover, in the previous experiment, our research group obtained the mutant strain HY68 of H. marmoreus, which can maintain normal fruiting under the condition of high concentration of CO2. Our study aimed to evaluate the CO2 tolerance ability of the mutant strain HY68, in comparison with the starting strain HY61 and the control strain HY62. We analyzed the mycelial growth of these strains under various conditions, including different temperatures, pH levels, carbon sources, and nitrogen sources, and measured the activity of the cellulose enzyme. Additionally, we identified and predicted ß-glucosidase-related genes in HY68 and analyzed their gene and protein structures. RESULTS: Our results indicate that HY68 showed superior CO2 tolerance compared to the other strains tested, with an optimal growth temperature of 25 °C and pH of 7, and maltose and beef paste as the ideal carbon and nitrogen sources, respectively. Enzyme activity assays revealed a positive correlation between ß-glucosidase activity and CO2 tolerance, with Gene14147 identified as the most closely related gene to this activity. Inbred strains of HY68 showed trait segregation for CO2 tolerance. CONCLUSIONS: Both HY68 and its self-bred offspring could tolerate CO2 stress. The fruiting period of the strains resistant to CO2 stress was shorter than that of the strains not tolerant to CO2 stress. The activity of ß-GC and the ability to tolerate CO2 were more closely related to the growth efficiency of fruiting bodies. This study lays the foundation for understanding how CO2 regulates the growth of edible fungi, which is conducive to the innovation of edible fungus breeding methods. The application of the new strain HY68 is beneficial to the research of energy-saving production in factory cultivation.
Asunto(s)
Agaricales , Ascomicetos , Celulasas , Animales , Bovinos , Cuerpos Fructíferos de los Hongos , Dióxido de Carbono/metabolismo , Fitomejoramiento , Nitrógeno/metabolismo , Carbono/metabolismo , Celulasas/análisis , Celulasas/metabolismoRESUMEN
The physical properties and nutritional quality of H. marmoreus by-products (HMB) dried by different methods were comprehensively evaluated by a rigorous statistical method of grey correlation analysis. The results indicated that different drying methods had significant impacts on the characteristics of HMB. Heat pump drying (HPD) was conducive to the preservation of protein and reducing sugar, and hot air drying (HAD) maintained a high content of total flavonoids. The highest fat, polysaccharide, and total phenolic contents were obtained by heated vacuum freeze-drying (H-VFD) treatment. The unheated vacuum freeze-drying (UH-VFD) treatment achieved bright colour, lacunose texture profile, and looser organization structure. The grey correlation analysis showed that UH-VFD and H-VFD had higher-weighted correlation degrees than HPD and HAD. HMB had many higher nutritional components than commodity specifications, especially protein, fat, polyphenols, and amino acids, and had potential applications in the food industry as functional foods and nutraceutical agents.
Asunto(s)
Agaricales , Animales , Desecación/métodos , Liofilización/métodos , ProteínasRESUMEN
A novel fungal immunomodulatory protein (FIP), identified as FIP-hma, was discovered in the genome of an edible mushroom Hypsizygus marmoreus. Bioinformatics analysis suggested FIP-hma contained the cerato-platanin (CP) conserved domain and was categorized into Cerato-type FIP. In phylogenetic analysis, FIP-hma was clustered into a new branch of the FIP family, displaying large system divergence from most of the other FIPs. The higher gene expression of FIP-hma was observed during the vegetative growth stages than that during the reproductive growth stages. In addition, the cDNA sequence of FIP-hma was cloned and successfully expressed in Escherichia coli (E. coli) BL21(DE3). The recombinant protein of FIP-hma (rFIP-hma) was neatly purified and isolated by Ni-NTA and SUMO-Protease. The iNOS, IL-6, IL-1ß, and TNF-α levels of RAW 264.7 macrophages were upregulated by rFIP-hma, indicating its activation of an immune response by regulating central cytokines. No cytotoxic effects were observed in an MTT test. The findings of this work discovered a novel immunoregulatory protein from H. marmoreus, provided a systematic bioinformatic profile, suggested an effective approach for its heterologous recombinant production, and reported its potent immunoregulatory activity in macrophages. This study sheds light on the physiological function research of FIPs and their further industrial utilization.
Asunto(s)
Agaricales , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Agaricales/metabolismo , Factores Inmunológicos/genética , Factores Inmunológicos/farmacología , Factores Inmunológicos/metabolismo , Proteínas Fúngicas/metabolismo , InmunidadRESUMEN
Zn(II)2Cys6 transcription factors are critical for the reproductive growth and sexual development of fungi, but their roles in Basidiomycota remain unclear. In this study, the Hypsizygus marmoreus gene hada-1 was shown to encode a Zn(II)2Cys6 transcription factor, the growth rate of mycelia was decreased, hyphae were angulated, and fruiting body development was hindered in the hada-1-silenced strains. In addition, mitochondrial stability was lost, and the mitochondria morphologies changed from oval shaped to dumbbell or linear shaped in the silenced strains. Regarding mitochondrial instability, the mitochondrial complex II, III, and V activities and adenosine triphosphate content were significantly decreased. At the same time, the activities of the carbohydrate metabolism-related enzymes glucose-6-plosphatase, glucose dehydrogenase, and laccase were significantly decreased, which might have resulted in the reduction of carbon metabolism. Furthermore, hada-1 was shown to regulate the reactive oxygen species (ROS) level; compared with the wild-type (WT) strain, the silenced mycelia exhibited higher ROS contents and were more sensitive to oxidative stress. Taken together, these results indicate that, as a global regulator, hada-1 plays crucial roles in mycelial growth, fruiting body development, carbon metabolism, mitochondrial stability, and oxidative stress in the basidiomycete H. marmoreus. KEY POINTS: ⢠Zn(II)2Cys6 transcription factor, mitochondrial stability, fruiting body development.
Asunto(s)
Agaricales , Micelio/genética , Factores de Transcripción , ZincRESUMEN
Plant defense responses are activated by various exogenous stimuli. We found that an aqueous extract of spent mushroom substrate used for the cultivation of Hypsizygus marmoreus induced defense responses in rice. Fractionation of the spent mushroom substrate extract indicated that the compounds responsible for this induction were neutral and hydrophilic molecules with molecular weights lower than 3 kDa. Compounds with these characteristics, namely glucose, fructose, and sucrose, were detected in the extract at concentrations of 17.4, 3.3, and 1.6 mM, respectively, and the treatment of rice leaves with these sugars induced defense responses. Furthermore, microarray analysis indicated that the genes involved in defense responses were commonly activated by the treatment of leaves with spent mushroom substrate extract and glucose. These findings indicate that the induction of defense responses by treatment with spent mushroom substrate extract is, at least in part, attributable to the sugar constituents of the extract.
Asunto(s)
Agaricales/efectos de los fármacos , Oryza/fisiología , Azúcares/farmacología , Agaricales/química , Genes de Plantas , Peso Molecular , Oryza/genética , Agua/químicaRESUMEN
BACKGROUND: The symbiotic bacteria associated with edible fungi are valuable microbial resources worthy of in-depth exploration. It is important to analyze the community structure and succession of symbiotic bacteria in mushrooms. This can assist in the isolation of growth-promoting strains that have an essential relationship with the cultivation cycle as well as the agronomic traits and yields of fruiting bodies. RESULTS: In all of the samples from cultivation bags of Hypsizygus marmoreus, 34 bacterial phyla were detected. Firmicutes was the most abundant bacterial phylum (78.85%). The genus Serratia showed an exponential increase in abundance in samples collected from the cultivation bags in the mature period, reaching a peak abundance of 55.74% and the dominant symbiotic flora. The most predominant strain was Serratia odorifera HZSO-1, and its abundance increased with the amount of hyphae of H. marmoreus. Serratia odorifera HZSO-1 could reside in the hyphae of H. marmoreus, promote growth and development, shorten the fruiting cycle by 3-4 days, and further increase the fruiting body yield by 12%. CONCLUSIONS: This study is a pioneering demonstration of the community structure of the symbiotic microbiota and bacteria-mushroom interaction in the growth and development of edible fungi. This work lays a theoretical foundation to improve the industrial production of mushrooms with symbiotic bacteria as assisting agents.
Asunto(s)
Agaricales/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Serratia/fisiología , Simbiosis/fisiología , Agaricales/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Hifa/crecimiento & desarrollo , Plantas/microbiología , Serratia/genéticaRESUMEN
Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points⢠ROS balance, energy metabolism, fruiting development.
Asunto(s)
Glutatión , Peróxido de Hidrógeno , Agaricales , Glutatión Peroxidasa/genética , Homeostasis , Especies Reactivas de OxígenoRESUMEN
BACKGROUND: Hypsizygus marmoreus, a high value commercialized edible mushroom is widely cultivated in East Asia, and has become one of the most popular edible mushrooms because of its rich nutritional and medicinal value. Mitochondria are vital organelles, and play various essential roles in eukaryotic cells. RESULTS: In this study, we provide the Hypsizygus marmoreus mitochondrial (mt) genome assembly: the circular sequence is 102,752 bp in size and contains 15 putative protein-coding genes, 2 ribosomal RNAs subunits and 28 tRNAs. We compared the mt genomes of the 27 fungal species in the Pezizomycotina and Basidiomycotina subphyla, with the results revealing that H. marmoreus is a sister to Tricholoma matsutake and the phylogenetic distribution of this fungus based on the mt genome. Phylogenetic analysis shows that Ascomycetes mitochondria started to diverge earlier than that of Basidiomycetes and supported the robustness of the hyper metric tree. The fungal sequences are highly polymorphic and gene order varies significantly in the dikarya data set, suggesting a correlation between the gene order and divergence time in the fungi mt genome. To detect the mt genome variations in H. marmoreus, we analyzed the mtDNA sequences of 48 strains. The phylogeny and variation sited type statistics of H. marmoreus provide clear-cut evidence for the existence of four well-defined cultivations isolated lineages, suggesting female ancestor origin of H. marmoreus. Furthermore, variations on two loci were further identified to be molecular markers for distinguishing the subgroup containing 32 strains of other strains. Fifteen conserved protein-coding genes of mtDNAs were analyzed, with fourteen revealed to be under purifying selection in the examined fungal species, suggesting the rapid evolution was caused by positive selection of this gene. CONCLUSIONS: Our studies have provided new reference mt genomes and comparisons between species and intraspecies with other strains, and provided future perspectives for assessing diversity and origin of H. marmoreus.
Asunto(s)
Agaricales/genética , Evolución Molecular , Genoma Mitocondrial/genética , Agaricales/clasificación , Ascomicetos/clasificación , Ascomicetos/genética , Basidiomycota/clasificación , Basidiomycota/genética , ADN Mitocondrial/genética , Proteínas Fúngicas/genética , Orden Génico , Variación Genética , Filogenia , Selección Genética , Especificidad de la EspecieRESUMEN
Spent mushroom compost (SMC) is a residue generated in edible mushrooms production, such as Hypsizygus marmoreus. Its genome was recently sequenced, demonstrating cuticle-degrading protease genes. The present work aims to investigate the proteases from H. marmoreus spent mushroom compost (SMC) by verifying its action on nematode larvae. The extraction of the crude extract directly with water from H. marmoreus SMC proved to be efficient for proteases obtainment, with proteolytic activity of 195.36⯱â¯18.38 U g-1 of compound. Moreover, the zymogram and SDS-PAGE indicated the presence of two proteases with estimated molecular weights of 30.2 and 33.7â¯kDa. Due to the protease activity present in H. marmoreus SMC extract, there was a significant reduction in the number of Panagrellus redivivus and L3 in treated group compared to control group (pâ¯<â¯0.01), with 52% and 26% of reduction, respectively. A0A151VWY3 mature protein is composed of 296 amino acid residues, exhibiting molecular weight and pI of 29.5â¯kDa and 6.72. A0A151WD28 mature protein is composed of 343 amino acid residues, exhibiting molecular weight and pI of 34.4â¯kDa and 8.04. In the present work it was demonstrated that SMC from H. marmoreus has easily extracted protease content, presenting two proteases, possibly with cuticle-degrading activity, which had significant nematicidal effect on P. redivivus and bovine infective larvae.
Asunto(s)
Agaricales/enzimología , Compostaje , Péptido Hidrolasas/metabolismo , Rabdítidos/efectos de los fármacos , Agaricales/genética , Animales , Bovinos , Mezclas Complejas/química , Mezclas Complejas/aislamiento & purificación , Mezclas Complejas/farmacología , Electroforesis en Gel de Poliacrilamida , Heces/parasitología , Larva/efectos de los fármacos , Peso Molecular , Péptido Hidrolasas/química , Rabdítidos/aislamiento & purificación , Strongyloidea/efectos de los fármacos , Strongyloidea/aislamiento & purificación , Trichostrongyloidea/efectos de los fármacos , Trichostrongyloidea/aislamiento & purificaciónRESUMEN
BACKGROUND: Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown. RESULTS: In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987-8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes. CONCLUSIONS: Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.
Asunto(s)
Agaricales/genética , Agaricales/metabolismo , Vías Biosintéticas , Proteínas Fúngicas/genética , Genoma Fúngico , Genómica , Terpenos/metabolismo , Secuencia de Aminoácidos , Metabolismo de los Hidratos de Carbono/genética , Evolución Molecular , Genómica/métodos , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Metabolismo Secundario , Análisis de Secuencia de ADNRESUMEN
As efficient reverse genetic tools are lacking, molecular genetics research has been limited in Hypsizygus marmoreus. In this study, we firstly constructed a gene-silencing method using a dual promoter vector (DPV) which was driven by gpd and 35 S promoters. The DPV was introduced into H. marmoreus via a simple electroporation procedure and the highest silenced rate of ura3 gene was 76.6%, indicating that the DPV might be suitable for gene silencing in basidiomycete. In this silencing system, the endogenous orotidine 5'-monophosphate decarboxylase gene (ura3) was used as a selectable marker. Besides, we also constructed another silencing system which could silence the ura3 and other genes (lcc1 encoded laccase1) together in H. marmoreus, and named it as co-silencing system. In the co-silenced transformants, we found that the mycelia were thinner and the growth was slower than in the wild-type and control2 strains, which was accordant with the previous study of lcc1 gene, indicating that the selective efficiency of the RNAi-mediated silencing of several genes might be increased by co-silencing ura3. The development of this molecular tool might improve functional studies of multiple genes in the basidiomycete H. marmoreus and also provide a reference for studies of other basidiomycetes.
Asunto(s)
Agaricales/genética , Silenciador del Gen , Biología Molecular/métodos , Regiones Promotoras Genéticas , Interferencia de ARN , Agaricales/crecimiento & desarrollo , Vectores Genéticos , Micelio/genética , Micelio/crecimiento & desarrollo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismoRESUMEN
This paper investigated the effects of steam explosion (SE) pretreatment on the structural characteristics and antioxidant activity of Hypsizygus marmoreus polysaccharides (HPS). Hypsizygus marmoreus samples were pretreated at different SE temperatures (120-200 °C) and polysaccharides were extracted using the water extraction and alcohol precipitation method. The results showed that SE pretreatment improved the extraction rate of HPS. Under the conditions of SE treatment time of 60 s and temperature of 160 °C, the extraction rate of HPS was the highest (8.78 ± 0.24%). After SE pretreatment, the structural changes of HPS tended to enhance the antioxidant activity, which showed that the content of Gal and Man in the monosaccharide composition increased and the molecular weight decreased. When testing antioxidant activity in vitro, the ability of SE-pretreated HPS to scavenge DPPH radicals, hydroxyl radicals, and superoxide anion radicals was better than that of HPS without SE pretreatment. Our findings shed light on SE pretreatment as an efficient method for extracting active polysaccharides, providing a new way to improve their extraction rate and biological activity.
RESUMEN
Films with simultaneously excellent mechanical and anti-fog properties are of great importance for food packaging. A novel strategy is described here to prepare long-lasting anti-fog film with antibacterial and antioxidant capabilities via a simple, green approach. The CMC (carboxymethyl chitosan) gel was integrated with CNF/TA (cellulose nanofibers/tannic acid) composite solution based on layer-by-layer assembly to form a membrane with a bilayer structure. The anti-fog performance of the bilayer film could be adjusted by regulating the CNF/TA layer thickness. On the whole, the developed anti-fog film had high mechanical strength and excellent UV shielding properties, as well as good antibacterial and antioxidant properties, and could be non-fogging for a long time under water vapor (40 °C). The effect of double layer anti-fog film (3%CmFT-3) on the fresh-keeping effect of white Hypsizygus marmoreus was compared at room temperature (28 °C) with commercially available anti-fog PVC film. The results showed that the bilayer anti-fog film could effectively prevent the generation of fog, delay the Browning, inhibit mildew, improve the overall acceptability, and effectively extend the shelf life of white Hypsizygus marmoreus. This biomass-based anti-fog film offers great potential for the development of multifunctional green food packaging.
Asunto(s)
Agaricales , Quitosano , Nanofibras , Polifenoles , Quitosano/farmacología , Quitosano/química , Celulosa/farmacología , Celulosa/química , Nanofibras/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Embalaje de AlimentosRESUMEN
Gas chromatography-ion mobility spectroscopy (GC-IMS) was used to analyze the volatile components in dried Hypsizygus marmoreus of different drying methods, including hot air drying (HAD), heat pump drying (HPD), heated freeze-drying (HFD), and unheated freeze-drying (UFD). A total of 116 signal peaks corresponding to 96 volatile compounds were identified, including 25 esters, 24 aldehydes, 23 alcohols, 13 ketones, 10 heterocyclic compounds, 8 carboxylic acids, 7 terpenes, 3 sulfur-containing compounds, 2 nitrogen-containing compounds, and 1 aromatic hydrocarbon. The total content of volatile compounds in H. marmoreus dried by the four methods, from highest to lowest, was as follows: HAD, HPD, HFD, and UFD. The main volatile compounds included carboxylic acids, alcohols, esters, and aldehydes. Comparing the peak intensities of volatile compounds in dried H. marmoreus using different drying methods, it was found that the synthesis of esters, aldehydes, and terpenes increased under hot drying methods such as HAD and HPD, while the synthesis of compounds containing sulfur and nitrogen increased under freeze-drying methods such as HFD and UFD. Nine common key characteristic flavor compounds of dried H. marmoreus were screened using relative odor activity values (ROAV > 1), including ethyl 3-methylbutanoate, acetic acid, 2-methylbutanal, propanal, methyl 2-propenyl sulfate, trimethylamine, 3-octanone, acetaldehide, and thiophene. In the odor description of volatile compounds with ROAV > 0.1, it was found that important flavor components such as trimethylamine, 3-octanone, (E)-2-octenal, and dimethyl disulfide are related to the aroma of seafood. Their ROAV order is HFD > UFD > HPD > HAD, indicating that H. marmoreus using the HFD method have the strongest seafood flavor. The research findings provide theoretical guidance for selecting drying methods and refining the processing of H. marmoreus.
RESUMEN
Hypsizygus marmoreuss is an under-explored source of flavor peptides that can enhance the flavor of NaCl or MSG, allowing products to be reformulated in line with reduction policies. This study utilized advanced techniques, including UPLC-Q-TOF MS/MS and molecular docking, to identify H. marmoreuss peptides. Sensory evaluations revealed 10 peptides with pronounced umami flavors and seven with dominantly salty tastes. VLPVPQK scored highest for umami intensity (5.2), and EGNPAHQK for salty intensity (6.2). Further investigation influenced by 0.35 % MSG or 0.35 % NaCl exposed peptides with elevated umami and salty thresholds. LDSPATPEK, VVEGEPSLK, and QKLPEKPER had umami-enhancing thresholds of 0.18, 0.18, and 0.35 mM, while LDSPATPEK and VVEGEPSLK had similar thresholds for salt (0.09 mM). Molecular docking revealed that taste receptor proteins interacted with umami peptides through hydrogen, carbon-hydrogen, alkyl, and van der Waals forces. Specific amino acids in the umami receptor T1R1 had roles in bonding with umami peptides through hydrogen and carbon-hydrogen interactions. In conclusion, molecular docking proved to be an effective and efficient method for flavor peptide screening. Further, this study demonstrated that flavor peptides from H. marmoreuss had the capacity to enhance NaCl and MSG flavours and might be useful tools for reformulation, reducing salt and MSG contents.
RESUMEN
The composition of culture substrate is an important environmental factor that affects the growth and metabolism of Hypsizygus marmoreus, and sawdust is commonly used as the substrate for cultivating mushrooms. However, the influences of sawdust on metabolic level of H. marmoreus in mycelial growth is little reported. In this study, the effect of sawdust addition on mycelial growth rate, morphological characteristics and nutrient content of H. marmoreus was explored, and the metabolic response was analyzed based on LC-MS/MS. The results showed the mycelial growth rates and the number of mycelial clamp connections in sawdust medium A and sawdust medium B were significantly higher than that of the basic medium (Control). The mycelial morphology in sawdust medium A was denser, with higher edge trimness and stronger aerial mycelia. The contents of crude fiber, crude protein and polysaccharide of the mycelia from sawdust medium A increased by 85.15%, 90.65% and 92.61%, respectively, compared to that in the basic medium. A total of 551 metabolites were identified and obtained. The differential accumulated metabolites (DAMs) were mainly amino acids, lipids compounds and carbohydrates. It was speculated that the addition of sawdust played a vital role in promoting the cell division and, thus, the formation of clamp connections in H. marmoreus mycelia. Regarding amino acids, the metabolism of glycine, serine and ABC transporters was active with the increase in sawdust, thereby increasing the protein content. And some valuable bioactive molecules were found, such as docosahexaenoic acid (DHA). This study will lay the foundation for further research on the substance transformation and quality improvement of cultivation substrate for mushrooms.
RESUMEN
γ-Aminobutyric (GABA) acid is a nutrient and signaling molecule existing in many plants, participating in the regulation of metabolism and various physiological activities. Two strains of Hypsizygus marmoreus (a white variety and a brown variety) were investigated to study the impact of exogenous GABA on mycelial growth and the response to stress. Mycelial growth, microscopic morphology, antioxidant profile, and gad2 expression in H. marmoreu were investigated under salt, dehydration, or cold stress. The results indicated that 5 mM GABA stimulated mycelial growth under standard cultivation conditions, whereas GABA addition over 10 mM hindered the growth. Under salt, dehydration, or cold stress, treatment with 5 mM GABA significantly enhanced the mycelial growth rate and density of both H. marmoreus strains by promoting front hyphae branching. Meanwhile, the activities of key antioxidant enzymes such as peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were enhanced by GABA, thereby augmenting the defensive network against abiotic stress. Additionally, gad2 expression and GABA concentration were increased under abiotic stresses as a resistance regulation response. The exogenous addition of GABA strengthened the upregulation of gad2 expression and GABA production. These findings indicated that exogenously adding low concentrations of GABA effectively enhanced the mycelial growth and antioxidant profile of H. marmoreus, thereby improving its resistance against stresses.
RESUMEN
Introduction: White Hypsizygus marmoreus is a popular edible mushroom. It is rich in nutrition and flavor but vulnerable to fungal disease, resulting in nutrient loss and aging. Methods: In this study, the pathogenic fungus Trichoderma spp. BBP-6 and its antagonist Bacillus sp. 1-23 were isolated and identified. The negative effects caused by this pathogen were judged by detecting a series of changes in the infected white H. marmoreus. The effects of Bacillus sp. 1-23 on Trichoderma spp. BBP-6 and the infected white H. marmoreus were detected. The effect of Bacillus sp. 1-23 treatment combined with salicylic acid (SA) was also considered. Results: The results showed that Trichoderma spp. BBP-6 could affect the activities of antioxidant enzymes PAL, POD, CAT, SOD, GR, PPO, and APX to interfere with the stability of the white H. marmoreus antioxidant enzyme system and cause the mushroom severe browning and nutrition loss, as well as general quality deterioration. Bacillus sp. 1-23 could produce chitinase and chitosanase enzymes to inhibit Trichoderma spp. BBP-6 directly. SA reinforced this inhibitory. Bacillus sp. 1-23 alone or combined with SA could help white H. marmoreus from the Trichoderma spp. BBP-6 infection to effectively maintain nutrients, restore and stabilize the antioxidant system, and reduce the production of malondialdehyde, superoxide anion and hydrogen peroxide. Discussion: Thus, such treatments could be considered potential methods to alleviate damage from disease and extend the shelf life of white H. marmoreus.