Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 811
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635634

RESUMEN

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(40): e2221286120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37756337

RESUMEN

AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W-P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superficie Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant J ; 119(2): 1073-1090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795008

RESUMEN

Abscisic acid (ABA) signaling interacts frequently with auxin signaling when it regulates plant development, affecting multiple physiological processes; however, to the best of our knowledge, their interaction during tomato development has not yet been reported. Here, we found that type 2C protein phosphatase (SlPP2C2) interacts with both flavin monooxygenase FZY, an indole-3-acetic acid (IAA) biosynthetic enzyme, and small auxin upregulated RNA (SAUR) of an IAA signaling protein and regulates their activity, thereby affecting the expression of IAA-responsive genes. The expression level of SlPP2C2 was increased by exogenous ABA, IAA, NaCl, or dehydration treatment of fruits, leaves, and seeds, and it decreased in imbibed seeds. Manipulating SlPP2C2 with overexpression, RNA interference, and CRISPR/Cas9-mediated genome editing resulted in pleiotropic changes, such as morphological changes in leaves, stem trichomes, floral organs and fruits, accompanied by alterations in IAA and ABA levels. Furthermore, the RNA-seq analysis indicated that SlPP2C2 regulates the expression of auxin-/IAA-responsive genes in different tissues of tomato. The results demonstrate that SlPP2C2-mediated ABA signaling regulates the development of both vegetative and reproductive organs via interaction with FZY/SAUR, which integrates the cross-talk of ABA and auxin signals during development and affects the expressions of development-related genes in tomato.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Plantas Modificadas Genéticamente , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética
4.
Plant J ; 118(2): 295-303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361343

RESUMEN

Plant genome editing and propagation are important tools in crop breeding and production. Both rely heavily on the development of efficient in vitro plant regeneration systems. Two prominent regeneration systems that are widely employed in crop production are somatic embryogenesis (SE) and de novo shoot regeneration. In many of the protocols for SE or shoot regeneration, explants are treated with the synthetic auxin analog 2,4-dichlorophenoxyacetic acid (2,4-D), since natural auxins, such as indole-3-acetic acid (IAA) or 4-chloroindole-3-acetic acid (4-Cl-IAA), are less effective or even fail to induce regeneration. Based on previous reports that 2,4-D, compared to endogenous auxins, is not effectively exported from plant cells, we investigated whether efflux inhibition of endogenous auxins could convert these auxins into efficient inducers of SE in Arabidopsis immature zygotic embryos (IZEs). We show that natural auxins and synthetic analogs thereof become efficient inducers of SE when their efflux is transiently inhibited by co-application of the auxin transport inhibitor naphthylphthalamic acid (NPA). Moreover, IZEs of auxin efflux mutants pin2 or abcb1 abcb19 show enhanced SE efficiency when treated with IAA or efflux-inhibited IAA, confirming that auxin efflux reduces the efficiency of Arabidopsis SE. Importantly, in contrast to the 2,4-D system, where only 50-60% of the embryos converted to seedlings, all SEs induced by transport-inhibited natural auxins converted to seedlings. Efflux-inhibited IAA, like 2,4-D, also efficiently induced SE from carrot suspension cells, whereas IAA alone could not, and efflux-inhibited 4-Cl-IAA significantly improved de novo shoot regeneration in Brassica napus. Our data provides new insights into the action of 2,4-D as an efficient inducer of plant regeneration but also shows that replacing this synthetic auxin for efflux-inhibited natural auxin significantly improves different types of plant regeneration, leading to a more synchronized and homogenous development of the regenerated plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/farmacología , Fitomejoramiento , Ácidos Indolacéticos/farmacología , Plantas/genética , Ácido 2,4-Diclorofenoxiacético/farmacología
5.
J Biol Chem ; 299(11): 105349, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838179

RESUMEN

Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl-) as compared to bromide-(Br-), fluoride-(F-), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 µM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl- channel.


Asunto(s)
Canales de Cloruro , Cloruros , Animales , Humanos , Ratones , Aniones/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Células Epiteliales/metabolismo , Células HEK293
6.
J Biol Chem ; 299(11): 105259, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717699

RESUMEN

The four-subunit negative elongation factor (NELF) complex mediates RNA polymerase II (Pol II) pausing at promoter-proximal regions. Ablation of individual NELF subunits destabilizes the NELF complex and causes cell lethality, leading to the prevailing concept that NELF-mediated Pol II pausing is essential for cell proliferation. Using separation-of-function mutations, we show here that NELFB function in cell proliferation can be uncoupled from that in Pol II pausing. NELFB mutants sequestered in the cytoplasm and deprived of NELF nuclear function still support cell proliferation and part of the NELFB-dependent transcriptome. Mechanistically, cytoplasmic NELFB physically and functionally interacts with prosurvival signaling kinases, most notably phosphatidylinositol-3-kinase/AKT. Ectopic expression of membrane-tethered phosphatidylinositol-3-kinase/AKT partially bypasses the role of NELFB in cell proliferation, but not Pol II occupancy. Together, these data expand the current understanding of the physiological impact of Pol II pausing and underscore the multiplicity of the biological functions of individual NELF subunits.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , ARN Polimerasa II , Citoplasma/metabolismo , Fosfatidilinositoles , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Ratones
7.
Mol Plant Microbe Interact ; 37(2): 155-165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38079389

RESUMEN

The plant hormone indole-3-acetic acid (IAA), also known as auxin, plays important roles in plant growth and development, as well as in several plant-microbe interactions. IAA also acts as a microbial signal and in many bacteria regulates metabolism, stress responses, and virulence. In the bacterial plant pathogen Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000), exposure to IAA results in large-scale transcriptional reprogramming, including the differential expression of several known virulence genes. However, how PtoDC3000 senses and responds to IAA and what aspects of its biology are regulated by IAA is not understood. To investigate the mechanisms involved in perceiving and responding to IAA, we carried out a genetic screen for mutants with altered responses to IAA. One group of mutants of particular interest carried disruptions in the aefR gene encoding a TetR family transcriptional regulator. Gene expression analysis confirmed that the aefR mutants have altered responses to IAA. Thus, AefR is the first demonstrated auxin response regulator in PtoDC3000. We also investigated several aspects of PtoDC3000 biology that are regulated by both AefR and IAA, including antibiotic resistance, motility, and virulence. The observation that the aefR mutant has altered virulence on Arabidopsis, suggests that the sector of the IAA response regulated by aefR is important during pathogenesis. Our findings also provide evidence that AefR plays a role in coordinating changes in gene expression during the transition from early to late stages of infection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Arabidopsis , Pseudomonas syringae , Pseudomonas syringae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/metabolismo , Virulencia/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/metabolismo
8.
BMC Genomics ; 25(1): 567, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840073

RESUMEN

BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Familia de Multigenes , Filogenia , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromosomas de las Plantas/genética , Evolución Molecular
9.
BMC Genomics ; 25(1): 382, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637768

RESUMEN

BACKGROUND: Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT: A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION: This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.


Asunto(s)
Sequías , Medicago sativa , Medicago sativa/genética , Filogenia , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
10.
EMBO J ; 39(1): e101515, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31617603

RESUMEN

The phytohormone auxin controls plant growth and development via TIR1-dependent protein degradation of canonical AUX/IAA proteins, which normally repress the activity of auxin response transcription factors (ARFs). IAA33 is a non-canonical AUX/IAA protein lacking a TIR1-binding domain, and its role in auxin signaling and plant development is not well understood. Here, we show that IAA33 maintains root distal stem cell identity and negatively regulates auxin signaling by interacting with ARF10 and ARF16. IAA33 competes with the canonical AUX/IAA repressor IAA5 for binding to ARF10/16 to protect them from IAA5-mediated inhibition. In contrast to auxin-dependent degradation of canonical AUX/IAA proteins, auxin stabilizes IAA33 protein via MITOGEN-ACTIVATED PROTEIN KINASE 14 (MPK14) and does not affect IAA33 gene expression. Taken together, this study provides insight into the molecular functions of non-canonical AUX/IAA proteins in auxin signaling transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteolisis , Transducción de Señal
11.
BMC Plant Biol ; 24(1): 275, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605329

RESUMEN

Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.


Asunto(s)
Brassica , Compostaje , Ácidos Indolacéticos , Contaminantes del Suelo , Humanos , Níquel/metabolismo , Níquel/toxicidad , Brassica/metabolismo , Peróxido de Hidrógeno/metabolismo , Rizosfera , Clorofila A , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
12.
BMC Plant Biol ; 24(1): 426, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769488

RESUMEN

To alleviate the selenium (Se) stress in fruit trees and improve its accumulation, the effects of exogenous indole-3-acetic acid (IAA) on the growth and Se accumulation of grapevine under Se stress were studied. The application of exogenous IAA increased the biomass of grapevine, and the concentration of exogenous IAA had a regression relationship with the biomass. The root and shoot biomass were the maximum at 60 mg L- 1 IAA, increasing by 15.61% and 23.95%, respectively, compared with the control. Exogenous IAA also increased the photosynthetic pigments and the activities of superoxide dismutase and peroxidase in grapevine. Moreover, exogenous IAA increased the contents of total Se, organic Se, and inorganic Se, and the concentration of exogenous IAA had a regression relationship with the total Se content. The highest contents of root total Se and shoot total Se were accumulated at 90 mg L- 1 IAA, increasing by 29.94% and 55.77% respectively,. In addition, the correlation and path analyses revealed that the carotenoid content and root total Se content were closely associated with the shoot total Se content. Therefore, the application of exogenous IAA can alleviate the stress of Se to grape and promote its uptake and the most effective amount for the uptake of Se is 90 mg L- 1 IAA.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Selenio , Vitis , Ácidos Indolacéticos/metabolismo , Selenio/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Vitis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Biomasa
13.
BMC Plant Biol ; 24(1): 815, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210254

RESUMEN

Enhanced phytoremediation offers a rapid and eco-friendly approach for cleaning agricultural soil contaminated with copper and cadmium which pose a direct threat to food scarcity and security. The current study aimed to compare the effectiveness of the two commonly used additives, IAA and EDTA, for the remediation of copper (Cu) and cadmium (Cd) contaminated soils using sunflower and maize. The plants were cultivated in pots under controlled conditions with four sets of treatments: control (0), Cu50/Cd50, Cu50/Cd50 + EDTA, and Cu50/Cd50 + IAA. The results showed that Cu50/Cd50 mg/kg drastically compromised the phytoremediation potential of both plants, as evident by reduced shoot and root length, and lower biomass. However, the augmentation of Cu50/Cd50 with EDTA or IAA improved the tested parameters. In sunflower, EDTA enhanced the accumulation of Cu and Cd by 58% and 21%, respectively, and improved plant biomass by 41%, compared to control treatment. However, IAA exhibited higher accumulation of Cu and Cd by 64% and 25%, respectively, and enhanced plant biomass by 43%. In case of maize, IAA was superior to EDTA which enhanced the accumulation of Cu and Cd by 87% and 32% respectively, and increased the plant biomass by 57%, compared to control treatment. Our findings demonstrate that foliar IAA is more effective than EDTA in enhancing the phytoremediation potential of sunflower and maize for Cu and Cd.


Asunto(s)
Biodegradación Ambiental , Cadmio , Cobre , Ácido Edético , Helianthus , Ácidos Indolacéticos , Contaminantes del Suelo , Zea mays , Cadmio/metabolismo , Ácido Edético/farmacología , Cobre/metabolismo , Contaminantes del Suelo/metabolismo , Helianthus/metabolismo , Helianthus/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Biomasa , Suelo/química
14.
BMC Plant Biol ; 24(1): 346, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684940

RESUMEN

BACKGROUND: White clover (Trifolium repens L.) is an excellent leguminous cool-season forage with a high protein content and strong nitrogen-fixing ability. Despite these advantages, its growth and development are markedly sensitive to environmental factors. Indole-3-acetic acid (IAA) is the major growth hormone in plants, regulating plant growth, development, and response to adversity. Nevertheless, the specific regulatory functions of Aux/IAA genes in response to abiotic stresses in white clover remain largely unexplored. RESULTS: In this study, we identified 47 Aux/IAA genes in the white clover genome, which were categorized into five groups based on phylogenetic analysis. The TrIAAs promoter region co-existed with different cis-regulatory elements involved in developmental and hormonal regulation, and stress responses, which may be closely related to their diverse regulatory roles. Collinearity analysis showed that the amplification of the TrIAA gene family was mainly carried out by segmental duplication. White clover Aux/IAA genes showed different expression patterns in different tissues and under different stress treatments. In addition, we performed a yeast two-hybrid analysis to investigate the interaction between white clover Aux/IAA and ARF proteins. Heterologous expression indicated that TrIAA18 could enhance stress tolerance in both yeast and transgenic Arabidopsis thaliana. CONCLUSION: These findings provide new scientific insights into the molecular mechanisms of growth hormone signaling in white clover and its functional characteristics in response to environmental stress.


Asunto(s)
Ácidos Indolacéticos , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Trifolium , Trifolium/genética , Trifolium/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas/genética
15.
Planta ; 259(6): 129, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639804

RESUMEN

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Asunto(s)
Resistencia a la Enfermedad , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistencia a la Enfermedad/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transducción de Señal , Acetatos/farmacología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
16.
Plant Biotechnol J ; 22(7): 2054-2074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38450864

RESUMEN

To challenge the invasion of various pathogens, plants re-direct their resources from plant growth to an innate immune defence system. However, the underlying mechanism that coordinates the induction of the host immune response and the suppression of plant growth remains unclear. Here we demonstrate that an auxin response factor, CaARF9, has dual roles in enhancing the immune resistance to Ralstonia solanacearum infection and in retarding plant growth by repressing the expression of its target genes as exemplified by Casmc4, CaLBD37, CaAPK1b and CaRROP1. The expression of these target genes not only stimulates plant growth but also negatively impacts pepper resistance to R. solanacearum. Under normal conditions, the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 is active when promoter-bound CaARF9 is complexed with CaIAA2. Under R. solanacearum infection, however, degradation of CaIAA2 is triggered by SA and JA-mediated signalling defence by the ubiquitin-proteasome system, which enables CaARF9 in the absence of CaIAA2 to repress the expression of Casmc4, CaLBD37, CaAPK1b and CaRROP1 and, in turn, impeding plant growth while facilitating plant defence to R. solanacearum infection. Our findings uncover an exquisite mechanism underlying the trade-off between plant growth and immunity mediated by the transcriptional repressor CaARF9 and its deactivation when complexed with CaIAA2.


Asunto(s)
Capsicum , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Capsicum/genética , Capsicum/inmunología , Capsicum/crecimiento & desarrollo , Capsicum/microbiología , Capsicum/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética
17.
BMC Microbiol ; 24(1): 327, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242527

RESUMEN

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR), as a group of environmentally friendly bacteria growing in the rhizosphere of plants, play an important role in plant growth and development and resistance to environmental stresses. However, their limited understanding has led to the fact that their large-scale use in agriculture is still scarce, and the mechanisms by which beneficial bacteria are selected by plants and how they interact with them are still unclear. METHOD: In this study, we investigated the interaction between the auxin-producing strain Bacillus aryabhattai LAD and maize roots, and performed transcriptomic and metabolomic analyses of Bacillus aryabhattai LAD after treatment with maize root secretions(RS). RESULTS: Our results show that there is a feedback effect between the plant immune system and bacterial auxin. Bacteria activate the immune response of plant roots to produce reactive oxygen species(ROS), which in turn stimulates bacteria to synthesize IAA, and the synthesized IAA further promotes plant growth. Under the condition of co-culture with LAD, the main root length, seedling length, root surface area and root volume of maize increased by 197%, 107%, 89% and 75%, respectively. In addition, the results of transcriptome metabolome analysis showed that LAD was significantly enriched in amino acid metabolism, carbohydrate metabolism and lipid metabolism pathways after RS treatment, including 93 differentially expressed genes and 45 differentially accumulated metabolites. CONCLUSION: Our findings not only provide a relevant model for exploring the effects of plant-soil microbial interactions on plant defense functions and thereby promoting plant growth, but also lay a solid foundation for the future large-scale use of PGPR in agriculture for sustainable agricultural development.


Asunto(s)
Bacillus , Ácidos Indolacéticos , Raíces de Plantas , Especies Reactivas de Oxígeno , Zea mays , Zea mays/microbiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Bacillus/metabolismo , Bacillus/genética , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Ácidos Indolacéticos/metabolismo , Rizosfera , Microbiología del Suelo , Transcriptoma , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo
18.
New Phytol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233513

RESUMEN

Lignin, a complex heterogenous polymer present in virtually all plant cell walls, plays a critical role in protecting plants from various stresses. However, little is known about how lignin modifications in sorghum will impact plant defense against sugarcane aphids (SCA), a key pest of sorghum. We utilized the sorghum brown midrib (bmr) mutants, which are impaired in monolignol synthesis, to understand sorghum defense mechanisms against SCA. We found that loss of Bmr12 function and overexpression (OE) of Bmr12 provided enhanced resistance and susceptibility to SCA, respectively, as compared with wild-type (WT; RTx430) plants. Monitoring of the aphid feeding behavior indicated that SCA spent more time in reaching the first sieve element phase on bmr12 plants compared with RTx430 and Bmr12-OE plants. A combination of transcriptomic and metabolomic analyses revealed that bmr12 plants displayed altered auxin metabolism upon SCA infestation and specifically, elevated levels of auxin conjugate indole-3-acetic acid-aspartic acid (IAA-Asp) were observed in bmr12 plants compared with RTx430 and Bmr12-OE plants. Furthermore, exogenous application of IAA-Asp restored resistance in Bmr12-OE plants, and artificial diet aphid feeding trial bioassays revealed that IAA-Asp is associated with enhanced resistance to SCA. Our findings highlight the molecular underpinnings that contribute to sorghum bmr12-mediated resistance to SCA.

19.
New Phytol ; 241(2): 592-606, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37974487

RESUMEN

Auxin signaling provides a promising approach to controlling root system architecture and improving stress tolerance in plants. However, how the auxin signaling is transducted in this process remains unclear. The Aux indole-3-acetic acid (IAA) repressor IAA17.1 is stabilized by salinity, and primarily expressed in the lateral root (LR) primordia and tips in poplar. Overexpression of the auxin-resistant form of IAA17.1 (IAA17.1m) led to growth inhibition of LRs, markedly reduced salt tolerance, increased reactive oxygen species (ROS) levels, and decreased flavonol content. We further identified that IAA17.1 can interact with the heat shock protein HSFA5a, which was highly expressed in roots and induced by salt stress. Overexpression of HSFA5a significantly increased flavonol content, reduced ROS accumulation, enhanced LR growth and salt tolerance in transgenic poplar. Moreover, HSFA5a could rescue the defective phenotypes caused by IAA17.1m. Expression analysis showed that genes associated with flavonol biosynthesis were altered in IAA17.1m- and HAFA5a-overexpressing plants. Furthermore, we identified that HSFA5a directly activated the expression of key enzyme genes in the flavonol biosynthesis pathway, while IAA17.1 suppressed HSFA5a-mediated activation of these genes. Collectively, the IAA17.1/HSFA5a module regulates flavonol biosynthesis, controls ROS accumulation, thereby modulating the root system of poplar to adapt to salt stress.


Asunto(s)
Populus , Tolerancia a la Sal , Especies Reactivas de Oxígeno/metabolismo , Estrés Salino , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
20.
New Phytol ; 241(6): 2448-2463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308183

RESUMEN

The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA