Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 221(1): 169-179, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067290

RESUMEN

What causes individual tree death in tropical forests remains a major gap in our understanding of the biology of tropical trees and leads to significant uncertainty in predicting global carbon cycle dynamics. We measured individual characteristics (diameter at breast height, wood density, growth rate, crown illumination and crown form) and environmental conditions (soil fertility and habitat suitability) for 26 425 trees ≥ 10 cm diameter at breast height belonging to 416 species in a 52-ha plot in Lambir Hills National Park, Malaysia. We used structural equation models to investigate the relationships among the different factors and tree mortality. Crown form (a proxy for mechanical damage and other stresses) and prior growth were the two most important factors related to mortality. The effect of all variables on mortality (except habitat suitability) was substantially greater than expected by chance. Tree death is the result of interactions between factors, including direct and indirect effects. Crown form/damage and prior growth mediated most of the effect of tree size, wood density, fertility and habitat suitability on mortality. Large-scale assessment of crown form or status may result in improved prediction of individual tree death at the landscape scale.


Asunto(s)
Bosques , Árboles/fisiología , Ecosistema , Malasia , Modelos Biológicos , Estrés Fisiológico , Clima Tropical , Madera/química
2.
Ecol Lett ; 18(8): 807-816, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26032408

RESUMEN

Plants interact with a diversity of microorganisms, and there is often concordance in their community structures. Because most community-level studies are observational, it is unclear if such concordance arises because of host specificity, in which microorganisms or plants limit each other's occurrence. Using a reciprocal transplant experiment, we tested the hypothesis that host specificity between trees and ectomycorrhizal fungi determines patterns of tree and fungal soil specialisation. Seedlings of 13 dipterocarp species with contrasting soil specialisations were seeded into plots crossing soil type and canopy openness. Ectomycorrhizal colonists were identified by DNA sequencing. After 2.5 years, we found no evidence of host specificity. Rather, soil environment was the primary determinant of ectomycorrhizal diversity and composition on seedlings. Despite their close symbiosis, our results show that ectomycorrhizal fungi and tree communities in this Bornean rain forest assemble independently of host-specific interactions, raising questions about how mutualism shapes the realised niche.


Asunto(s)
Micorrizas/clasificación , Microbiología del Suelo , Simbiosis , Árboles/microbiología , Borneo , ADN de Hongos/genética , Hongos/clasificación , Hongos/genética , Modelos Lineales , Micorrizas/genética , Raíces de Plantas/microbiología , Bosque Lluvioso , Análisis de Secuencia de ADN , Suelo , Árboles/clasificación , Clima Tropical
3.
Ecol Evol ; 12(1): e8478, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127017

RESUMEN

Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators. Intrinsic correlation between proximity to adult conspecifics (i.e., recruitment neighborhood) and local seedling density, arising from dispersal, makes it difficult to separate the independent and interactive factors that contribute to recruitment success. Here, we present a field experiment in which we manipulated both the recruitment neighborhood and seedling density to explore how they interact to influence the growth and survival of Dryobalanops aromatica, a dominant ectomycorrhizal tree species in a Bornean tropical rainforest. First, we found that both local seedling density and recruitment neighborhood had effects on performance of D. aromatica seedlings, though the nature of these impacts varied between growth and survival. Second, we did not find strong evidence that the effect of density on seedling survival is dependent on the presence of conspecific adult trees. However, accumulation of mutualistic fungi beneath conspecifics adults does facilitate establishment of D. aromatica seedlings. In total, our results suggest that recruitment near adult conspecifics was not associated with a performance cost and may have weakly benefitted recruiting seedlings. Positive effects of conspecifics may be a factor facilitating the regional hyperabundance of this species. Synthesis: Our results provide support for the idea that dominant species in diverse forests may escape the localized recruitment suppression that limits abundance in rarer species.

4.
Ecol Evol ; 9(17): 9644-9653, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534682

RESUMEN

Many ecological applications, like the study of mortality rates, require the estimation of proportions and confidence intervals for them. The traditional way of doing this applies the binomial distribution, which describes the outcome of a series of Bernoulli trials. This distribution assumes that observations are independent and the probability of success is the same for all the individual observations. Both assumptions are obviously false in many cases.I show how to apply bootstrap and the Poisson binomial distribution (a generalization of the binomial distribution) to the estimation of proportions. Any information at the individual level would result in better (narrower) confidence intervals around the estimation of proportions. As a case study, I applied this method to the calculation of mortality rates in a forest plot of tropical trees in Lambir Hills National Park, Malaysia.I calculated central estimates and 95% confidence intervals for species-level mortality rates for 1,007 tree species. I used a very simple model of spatial dependence in survival to estimate individual-level risk of mortality. The results obtained by accounting for heterogeneity in individual-level risk of mortality were comparable to those obtained with the binomial distribution in terms of central estimates, but the precision increased in virtually all cases, with an average reduction in the width of the confidence interval of ~20%.Spatial information allows the estimation of individual-level probabilities of survival, and this increases the precision in the estimates of mortality rates. The general method described here, with modifications, could be applied to reduce uncertainty in the estimation of proportions related to any spatially structured phenomenon with two possible outcomes. More sophisticated approaches can yield better estimates of individual-level mortality and thus narrower confidence intervals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA