Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 178(4): 1004-1015.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398326

RESUMEN

Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Células Germinativas/inmunología , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Glicoproteínas de Membrana/química , Proteínas del Envoltorio Viral/química , Animales , Antígenos Virales/inmunología , Chlorocebus aethiops , Drosophila/citología , Epítopos/química , Epítopos/inmunología , Células HEK293 , Humanos , Fiebre de Lassa/virología , Glicoproteínas de Membrana/inmunología , Estructura Secundaria de Proteína , Células Vero , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología
2.
Immunity ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39013466

RESUMEN

Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.

3.
Proc Natl Acad Sci U S A ; 120(34): e2304876120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590417

RESUMEN

There are no approved treatments for Lassa fever (LF), which is responsible for thousands of deaths each year in West Africa. A major challenge in developing effective medical countermeasures against LF is the high diversity of circulating Lassa virus (LASV) strains with four recognized lineages and four proposed lineages. The recent resurgence of LASV in Nigeria caused by genetically distinct strains underscores this concern. Two LASV lineages (II and III) are dominant in Nigeria. Here, we show that combinations of two or three pan-lineage neutralizing human monoclonal antibodies (8.9F, 12.1F, 37.D) known as Arevirumab-2 or Arevirumab-3 can protect up to 100% of cynomolgus macaques against challenge with both lineage II and III LASV isolates when treatment is initiated at advanced stages of disease on day 8 after LASV exposure. This work demonstrates that it may be possible to develop postexposure interventions that can broadly protect against most strains of LASV.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Animales , Humanos , Fiebre de Lassa/prevención & control , África Occidental , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Macaca fascicularis
4.
J Virol ; 98(7): e0071424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38809021

RESUMEN

Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC50) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC50 values of 0.31 µM-0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs.IMPORTANCELassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.


Asunto(s)
Antivirales , Fiebre de Lassa , Virus Lassa , Internalización del Virus , Replicación Viral , Virus Lassa/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Humanos , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Fiebre de Lassa/virología , Fiebre de Lassa/tratamiento farmacológico , Células Vero , Receptores de Estrógenos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Fenilalanina/farmacología , Fenilalanina/análogos & derivados
5.
J Virol ; 98(6): e0057824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38767352

RESUMEN

The mammarenavirus Lassa virus (LASV) causes the life-threatening hemorrhagic fever disease, Lassa fever. The lack of licensed medical countermeasures against LASV underscores the urgent need for the development of novel LASV vaccines, which has been hampered by the requirement for a biosafety level 4 facility to handle live LASV. Here, we investigated the efficacy of mRNA-lipid nanoparticle (mRNA-LNP)-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), in mice. Two doses of LASgpc- or LCMnp-mRNA-LNP administered intravenously (i.v.) protected C57BL/6 mice from a lethal challenge with a recombinant (r) LCMV expressing a modified LASgpc (rLCMV/LASgpc2m) inoculated intracranially. Intramuscular (i.m.) immunization with two doses of LASgpc- or LCMnp-mRNA-LNP significantly reduced the viral load in C57BL/6 mice inoculated i.v. with rLCMV/LASgpc2m. High levels of viremia and lethality were observed in CBA mice inoculated i.v. with rLCMV/LASgpc2m, which were abrogated by i.m. immunization with two doses of LASgpc-mRNA-LNP. The protective efficacy of two i.m. doses of LCMnp-mRNA-LNP was confirmed in a lethal hemorrhagic disease model of FVB mice i.v. inoculated with wild-type rLCMV. In all conditions tested, negligible and high levels of LASgpc- and LCMnp-specific antibodies were detected in mRNA-LNP-immunized mice, respectively, but robust LASgpc- and LCMnp-specific CD8+ T cell responses were induced. Accordingly, plasma from LASgpc-mRNA-LNP-immunized mice did not exhibit neutralizing activity. Our findings and surrogate mouse models of LASV infection, which can be studied at a reduced biocontainment level, provide a critical foundation for the rapid development of mRNA-LNP-based LASV vaccines.IMPORTANCELassa virus (LASV) is a highly pathogenic mammarenavirus responsible for several hundred thousand infections annually in West African countries, causing a high number of lethal Lassa fever (LF) cases. Despite its significant impact on human health, clinically approved, safe, and effective medical countermeasures against LF are not available. The requirement of a biosafety level 4 facility to handle live LASV has been one of the main obstacles to the research and development of LASV countermeasures. Here, we report that two doses of mRNA-lipid nanoparticle-based vaccines expressing the LASV glycoprotein precursor (LASgpc) or nucleoprotein (LCMnp) of lymphocytic choriomeningitis virus (LCMV), a mammarenavirus genetically closely related to LASV, conferred protection to recombinant LCMV-based surrogate mouse models of lethal LASV infection. Notably, robust LASgpc- and LCMnp-specific CD8+ T cell responses were detected in mRNA-LNP-immunized mice, whereas no virus-neutralizing activity was observed.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Virus de la Coriomeningitis Linfocítica , Nanopartículas , Vacunas Virales , Animales , Femenino , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Glicoproteínas/inmunología , Glicoproteínas/genética , Fiebre de Lassa/prevención & control , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Virus Lassa/genética , Liposomas , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/genética , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Nucleoproteínas/inmunología , Nucleoproteínas/genética , ARN Mensajero/genética , ARN Mensajero/inmunología , Carga Viral , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
6.
Emerg Infect Dis ; 30(5): 1004-1008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666640

RESUMEN

We evaluated the in vitro effects of lyophilization for 2 vesicular stomatitis virus-based vaccines by using 3 stabilizing formulations and demonstrated protective immunity of lyophilized/reconstituted vaccine in guinea pigs. Lyophilization increased stability of the vaccines, but specific vesicular stomatitis virus-based vaccines will each require extensive analysis to optimize stabilizing formulations.


Asunto(s)
Modelos Animales de Enfermedad , Liofilización , Estomatitis Vesicular , Vacunas Virales , Animales , Cobayas , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/prevención & control , Estomatitis Vesicular/virología , Vesiculovirus/inmunología , Vesiculovirus/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Eficacia de las Vacunas , Virus de la Estomatitis Vesicular Indiana/inmunología
7.
J Virol ; 97(1): e0138522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533953

RESUMEN

Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.


Asunto(s)
Ingeniería Genética , Virus de la Coriomeningitis Linfocítica , Vacunas Virales , Animales , Humanos , Ratones , Codón/genética , ADN Intergénico/genética , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones Endogámicos C57BL , Vacunas Atenuadas/inmunología , Desarrollo de Vacunas
8.
BMC Infect Dis ; 24(1): 314, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486143

RESUMEN

BACKGROUND: Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited. METHODS: To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences. RESULTS: The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV. CONCLUSION: This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Humanos , Virus Lassa/genética , Filogenia , Fiebre de Lassa/epidemiología , Aminoácidos , Liberia
9.
Ecol Lett ; 26(11): 1974-1986, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37737493

RESUMEN

Zoonotic diseases threaten human health worldwide and are often associated with anthropogenic disturbance. Predicting how disturbance influences spillover risk is critical for effective disease intervention but difficult to achieve at fine spatial scales. Here, we develop a method that learns the spatial distribution of a reservoir species from aerial imagery. Our approach uses neural networks to extract features of known or hypothesized importance from images. The spatial distribution of these features is then summarized and linked to spatially explicit reservoir presence/absence data using boosted regression trees. We demonstrate the utility of our method by applying it to the reservoir of Lassa virus, Mastomys natalensis, within the West African nations of Sierra Leone and Guinea. We show that, when trained using reservoir trapping data and publicly available aerial imagery, our framework learns relationships between environmental features and reservoir occurrence and accurately ranks areas according to the likelihood of reservoir presence.


Asunto(s)
Fiebre de Lassa , Animales , Humanos , Fiebre de Lassa/epidemiología , Reservorios de Enfermedades , Zoonosis , Virus Lassa , Guinea/epidemiología , Murinae
10.
Emerg Infect Dis ; 29(11): 2285-2291, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877545

RESUMEN

Lassa fever, caused by Lassa virus (LASV), is endemic to West Africa, where ≈300,000 illnesses and ≈5,000 deaths occur annually. LASV is primarily spread by infected multimammate rats via urine and fomites, highlighting the need to understand the environmental fate of LASV. We evaluated persistence of LASV Josiah and Sauerwald strains on surfaces, in aqueous solutions, and with sodium hypochlorite disinfection. Tested strains were more stable in deionized water (first-order rate constant [k] for Josiah, 0.23 days; for Sauerwald, k = 0.34 days) than primary influent wastewater (Josiah, k = 1.3 days; Sauerwald, k = 1.9 days). Both strains had similar decay rates on high-density polyethylene (Josiah, k = 4.3 days; Sauerwald, k = 2.3 days) and stainless steel (Josiah, k = 5.3 days; Sauerwald, k = 2.7 days). Sodium hypochlorite was highly effective at inactivating both strains. Our findings can inform future risk assessment and management efforts for Lassa fever.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Animales , Ratas , Fiebre de Lassa/epidemiología , Fiebre de Lassa/prevención & control , Desinfección , Hipoclorito de Sodio , África Occidental
11.
Emerg Infect Dis ; 29(2): 304-313, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36692336

RESUMEN

Lassa fever virus (LASV) is the causative agent of Lassa fever, a disease endemic in West Africa. Exploring the relationships between environmental factors and LASV transmission across ecologically diverse regions can provide crucial information for the design of appropriate interventions and disease monitoring. We investigated LASV exposure in 2 ecologically diverse regions of Guinea. Our results showed that exposure to LASV was heterogenous between and within sites. LASV IgG seropositivity was 11.9% (95% CI 9.7%-14.5%) in a coastal study site in Basse-Guinée, but it was 59.6% (95% CI 55.5%-63.5%) in a forested study site located in Guinée Forestière. Seropositivity increased with age in the coastal site. We also found significant associations between exposure risk for LASV and landscape fragmentation in coastal and forested regions. Our study highlights the potential link between environmental change and LASV emergence and the urgent need for research on land management practices that reduce disease risks.


Asunto(s)
Fiebre de Lassa , Humanos , Fiebre de Lassa/epidemiología , Guinea/epidemiología , Virus Lassa , África Occidental
12.
J Virol ; 96(16): e0075422, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35913216

RESUMEN

Lassa virus (LASV) is a mammarenavirus that can cause lethal Lassa fever disease with no FDA-approved vaccine and limited treatment options. Fatal LASV infections are associated with innate immune suppression. We have previously shown that the small matrix Z protein of LASV, but not of a nonpathogenic arenavirus Pichinde virus (PICV), can inhibit the cellular RIG-I-like receptors (RLRs), but its biological significance has not been evaluated in an infectious virus due to the multiple essential functions of the Z protein required for the viral life cycle. In this study, we developed a stable HeLa cell line (HeLa-iRIGN) that could be rapidly and robustly induced by doxycycline (Dox) treatment to express RIG-I N-terminal effector, with concomitant production of type I interferons (IFN-Is). We also generated recombinant tri-segmented PICVs, rP18tri-LZ, and rP18tri-PZ, which encode LASV Z and PICV Z, respectively, as an extra mScarlet fusion protein that is nonessential for the viral life cycle. Upon infection, rP18tri-LZ consistently expressed viral genes at a higher level than rP18tri-PZ. rP18tri-LZ also showed a higher level of a viral infection than rP18tri-PZ did in HeLa-iRIGN cells, especially upon Dox induction. The heterologous Z gene did not alter viral growth in Vero and A549 cells by growth curve analysis, while LASV Z strongly increased and prolonged viral gene expression, especially in IFN-competent A549 cells. Our study provides important insights into the biological role of LASV Z-mediated RIG-I inhibition and implicates LASV Z as a potential virulence factor. IMPORTANCE Lassa virus (LASV) can cause lethal hemorrhagic fever disease in humans but other arenaviruses, such as Pichinde virus (PICV), do not cause obvious disease. We have previously shown that the Z protein of LASV but not of PICV can inhibit RIG-I, a cytosolic innate immune receptor. In this study, we developed a stable HeLa cell line that can be induced to express the RIG-I N-terminal effector domain, which allows for timely control of RIG-I activation. We also generated recombinant PICVs encoding LASV Z or PICV Z as an extra gene that is nonessential for the viral life cycle. Compared to PICV Z, LASV Z could increase viral gene expression and viral infection in an infectious arenavirus system, especially when RIG-I signaling is activated. Our study presented a convenient cell system to characterize RIG-I signaling and its antagonists and revealed LASV Z as a possible virulence factor and a potential antiviral target.


Asunto(s)
Virus Lassa , Proteínas Virales/metabolismo , Células HeLa , Humanos , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Virus Lassa/fisiología , Virus Pichinde/genética , Factores de Virulencia
13.
Bioorg Med Chem Lett ; 83: 129175, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758821

RESUMEN

Bunyaviruses, including the Lassa virus (LASV), are known to cause hemorrhagic fever and have a high fatality rate among hospitalized patients, as there are few effective treatments. We focused on the fact that bunyaviruses use cap-dependent endonuclease (CEN) for viral replication, which is similar to influenza viruses. This led us to screen carbamoyl pyridone bicycle (CAB) compounds, which compose a series of baloxavir acid (BXA) derivatives, against lymphocytic choriomeningitis virus (LCMV) and Junin virus (JUNV) among the bunyaviruses. This led to the discovery of 1c, which has potent anti-bunyaviral activities. In SAR studies, we found that a large lipophilic side chain is preferred for the 1-position of the CAB scaffold, similar to the influenza CEN inhibitor, and that a small alkyl group for the 3-position shows high activity. Moreover, the 7­carboxyl group of the scaffold is essential for anti-bunyaviral activities, and the antiviral activity is reduced by conversion to various carboxylic acid bioisosteres. The SAR results are discussed using a binding model of 9d in the active center of the known LCMV CEN crystal structure. These compounds show promise as broad-spectrum anti-bunyavirus therapeutics, given their relatively favorable metabolic stability and PK profiles.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Humanos , Relación Estructura-Actividad , Antivirales/farmacología , Antivirales/química , Endonucleasas/metabolismo
14.
J Appl Toxicol ; 43(5): 719-733, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36480160

RESUMEN

MV-LASV is an investigational measles Schwarz-based vaccine for the prevention of Lassa fever. A repeated-dose toxicity study in cynomolgus macaques was performed to assess the biodistribution and local and systemic toxicological effects. Monkeys received three immunizations of MV-LASV or saline intramuscularly with a 2-week interval. An increase in anti-measles antibodies confirmed the reaction of the immune system to the vaccine backbone. Clinical observations, body weight, body temperature, local tolerance, electrocardiogram parameters, various clinical pathology parameters (hematology, coagulation urinalysis, serum chemistry, and C-reactive protein) were monitored. Gross pathology and histopathology of various tissues were evaluated. MV-LASV induced a mild increase in fibrinogen and C-reactive protein concentrations. This coincided with microscopic inflammation at the injection sites which partially or fully resolved following a 3-week recovery period. Viral RNA was found in secondary lymphoid organs and injection sites and gall bladder. No viral shedding to the environment was observed. Overall, the vaccine was locally and systemically well tolerated, supporting a first-in-human study.


Asunto(s)
Fiebre de Lassa , Vacuna Antisarampión , Animales , Humanos , Distribución Tisular , Proteína C-Reactiva , Macaca fascicularis , Fiebre de Lassa/prevención & control , Vacunas Sintéticas
15.
Adv Exp Med Biol ; 1407: 279-297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920703

RESUMEN

Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.


Asunto(s)
Arenaviridae , Arenavirus del Nuevo Mundo , Humanos , Arenaviridae/genética , Pseudotipado Viral , Virus de la Coriomeningitis Linfocítica/genética , Arenavirus del Nuevo Mundo/genética , Virus Lassa/genética
16.
Molecules ; 28(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36838567

RESUMEN

The Lassa virus (LASV) causes Lassa fever, a highly infectious and lethal agent of acute viral hemorrhagic fever. At present, there are still no effective treatments available, creating an urgent need to develop novel therapeutics. Some benzimidazole compounds targeting the arenavirus envelope glycoprotein complex (GPC) are promising inhibitors of LASV. In this study, we synthesized two series of LASV inhibitors based on the benzimidazole structure. Lentiviral pseudotypes bearing the LASV GPC were established to identify virus entry inhibitors. Surface plasmon resonance (SPR) was further used to verify the binding activities of the potential compounds. Compounds 7d-Z, 7h-Z, 13c, 13d, and 13f showed relatively excellent antiviral activities with IC50 values ranging from 7.58 to 15.46 nM and their SI values above 1251. These five representative compounds exhibited stronger binding affinity with low equilibrium dissociation constants (KD < 8.25 × 10-7 M) in SPR study. The compound 7h-Z displayed the most potent antiviral activity (IC50 = 7.58 nM) with a relatively high SI value (2496), which could be further studied as a lead compound. The structure-activity relationship indicated that the compounds with lipophilic and spatially larger substituents might possess higher antiviral activity and a much larger safety margin. This study will provide some good guidance for the development of highly active compounds with a novel skeleton against LASV.


Asunto(s)
Arenavirus , Fiebre de Lassa , Humanos , Virus Lassa , Fiebre de Lassa/tratamiento farmacológico , Antivirales/farmacología , Bencimidazoles/farmacología
17.
Emerg Infect Dis ; 28(10): 2060-2063, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36148915

RESUMEN

Lassa fever is a viral hemorrhagic fever treated with supportive care and the broad-spectrum antiviral drug ribavirin. The pathophysiology, especially the role of hyperinflammation, of this disease is unknown. We report successful remission of complicated Lassa fever in 2 patients in Nigeria who received the antiinflammatory agent dexamethasone and standard ribavirin.


Asunto(s)
Fiebre de Lassa , Antivirales/uso terapéutico , Dexametasona/uso terapéutico , Humanos , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/tratamiento farmacológico , Virus Lassa/genética , Ribavirina/uso terapéutico
18.
Emerg Infect Dis ; 28(5): 994-997, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35226800

RESUMEN

During the 2018 Lassa fever outbreak in Nigeria, samples from patients with suspected Lassa fever but negative Lassa virus PCR results were processed through custom gene expression array cards and metagenomic sequencing. Results demonstrated no single etiology, but bacterial and viral pathogens (including mixed co-infections) were detected.


Asunto(s)
Fiebre de Lassa , Brotes de Enfermedades , Humanos , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/epidemiología , Virus Lassa/genética , Nigeria/epidemiología , Reacción en Cadena de la Polimerasa
19.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142146

RESUMEN

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Asunto(s)
Células Endoteliales/patología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , MicroARNs , Enzima Convertidora de Angiotensina 2 , COVID-19 , Dengue , Células Endoteliales/metabolismo , Fiebre Hemorrágica Ebola , Humanos , Inmunoglobulinas , MicroARNs/genética , Mucinas , Neuropilina-1/genética , Peptidil-Dipeptidasa A , SARS-CoV-2 , Accidente Cerebrovascular , Virus Zika , Infección por el Virus Zika
20.
J Biol Chem ; 295(20): 6785-6797, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32284326

RESUMEN

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Betacoronavirus/enzimología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Betacoronavirus/fisiología , Modelos Moleculares , SARS-CoV-2 , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA