Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharm Res ; 37(5): 84, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32318827

RESUMEN

PURPOSE: The current trend for continuous drug product manufacturing requires new, affordable process analytical techniques (PAT) to ensure control of processing. This work evaluates whether property models based on spectral data from recent Fabry-Pérot Interferometer based NIR sensors can generate a high-resolution moisture signal suitable for process control. METHODS: Spectral data and offline moisture content were recorded for 14 fluid bed dryer batches of pharmaceutical granules. A PLS moisture model was constructed resulting in a high resolution moisture signal, used to demonstrate (i) endpoint determination and (ii) evaluation of mass transfer performance. RESULTS: The sensors appear robust with respect to vibration and ambient temperature changes, and the accuracy of water content predictions (±13 % ) is similar to those reported for high specification NIR sensors. Fusion of temperature and moisture content signal allowed monitoring of water transport rates in the fluidised bed and highlighted the importance water transport within the solid phase at low moisture levels. The NIR data was also successfully used with PCA-based MSPC models for endpoint detection. CONCLUSIONS: The spectral quality of the small form factor NIR sensor and its robustness is clearly sufficient for the construction and application of PLS models as well as PCA-based MSPC moisture models. The resulting high resolution moisture content signal was successfully used for endpoint detection and monitoring the mass transfer rate.


Asunto(s)
Espectroscopía Infrarroja Corta/economía , Espectroscopía Infrarroja Corta/instrumentación , Tecnología Farmacéutica/métodos , Composición de Medicamentos , Sistemas Microelectromecánicos , Polvos/química , Presión , Temperatura , Agua
2.
Talanta ; 224: 121735, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379003

RESUMEN

Recent advances in the latest generation of MEMS (micro-electro-mechanical system) Fabry-Pérot interferometers (FPI) for near infrared (NIR) wavelengths has led to the development of ultra-fast and low cost NIR sensors with potential to be used by the process industry. One of these miniaturised sensors operating from 1350 to 1650 nm, was integrated into a software platform to monitor a multiphase solid-gas-liquid process, for the production of saturated polyester resins. Twelve batches were run in a 2 L reactor mimicking industrial conditions (24 h process, with temperatures ranging from 220 to 240 °C), using an immersion NIR transmission probe. Because of the multiphase nature of the reaction, strong interference produced by process disturbances such as temperature variations and the presence of solid particles and bubbles in the online spectra required robust pre-processing algorithms and a good long-term stability of the probe. These allowed partial least squares (PLS) regression models to be built for the key analytical parameters acid number and viscosity. In parallel, spectra were also used to build an end-point detection model based on principal component analysis (PCA) for multivariate statistical process control (MSPC). The novel MEMS-FPI sensor combined with robust chemometric analysis proved to be a suitable and affordable alternative for online process monitoring, contributing to sustainability in the process industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA