RESUMEN
At present, the function of SOCS1 in Kashin-Beck disease (KBD) has not been reported. This study aims to explore the expression and mechanism of SOCS1 in KBD, and provide theoretical basis for the prevention and treatment of KBD. The expression of SOCS1 were measured by qRT-PCR and Western blot. ELISA was used to detect the content of SOCS1 in serum and synovial fluid. CCK-8 kits were selected to measure the cell viability. Methylation Specific PCR (MSP) assay is used to detect the methylation level of SOCS1 in chondrocytes. Flow cytometry was used to analyze the apoptosis rate of chondrocytes in different groups. The expression of apoptosis related proteins (caspase-3 and caspase-9) and Cytochrome c were detected using Western blot. The mitochondrial ROS, ATP and the activity of mitochondrial respiratory chain complexes were detected using commercial kits. The results showed that the expression of SOCS1 significantly increases in KBD patients and T-2 induced chondrocytes. Further research has found that the methylation levels of SOCS1 were significantly reduced in KBD patients and T-2 induced chondrocytes. Functional studies have found that SOCS1 silencing inhibited chondrocyte apoptosis and mitochondrial dysfunction. More importantly, SOCS1 regulated mitochondrial mediated chondrocyte apoptosis through the IGF-1/IGF-1R/FAK/Drp1 pathway. In conclusion, SOCS1 expression is increased and methylation levels are decreased in KBD, and is involved in regulating mitochondrial mediated apoptosis in T-2 induced chondrocytes through IGF-1/IGF-1R/FAK/Drp1 signaling. This study provides new theoretical basis for the treatment and prevention of KBD in clinical practice.
Asunto(s)
Apoptosis , Condrocitos , Metilación de ADN , Mitocondrias , Regiones Promotoras Genéticas , Proteína 1 Supresora de la Señalización de Citocinas , Humanos , Apoptosis/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética , Condrocitos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Regiones Promotoras Genéticas/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/patología , Masculino , Persona de Mediana Edad , Femenino , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genéticaRESUMEN
Iron-sulfur (Fe-S) clusters (ISCs) are ubiquitous cofactors essential to numerous fundamental cellular processes. Assembly of ISCs and their insertion into apoproteins involves the function of complex cellular machineries that operate in parallel in the mitochondrial and cytosolic/nuclear compartments of mammalian cells. The spectrum of diseases caused by inherited defects in genes that encode the Fe-S assembly proteins has recently expanded to include multiple rare human diseases, which manifest distinctive combinations and severities of global and tissue-specific impairments. In this review, we provide an overview of our understanding of ISC biogenesis in mammalian cells, discuss recent work that has shed light on the molecular interactions that govern ISC assembly, and focus on human diseases caused by failures of the biogenesis pathway.
Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Citosol/metabolismo , ADN/metabolismo , Mitocondrias/metabolismo , ARN/metabolismoRESUMEN
Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.
Asunto(s)
Enfermedades Mitocondriales , Neoplasias Pancreáticas , Humanos , Flavonoles , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente TumoralRESUMEN
Mitochondrial dysfunctions are significantly implicated in cancer initiation, progression, and metastasis, which have been shown for several cancers including ovarian cancer.An increase in mitochondrial dysfunction is also associated with drug resistance along with cancer progression, which in part is related to its specific microenvironment that is characterized by ascites, low glucose levels, and hypoxia that causes ovarian cancer cells to switch to mitochondrial respiration to enable their survival. Peritoneal ascitic fluid accumulation is a specific feature of ovarian cancer, and it is a major cause of its metastatic spread that also presents challenges for effective treatment. Among the treatment difficulties for ovarian cancer is the mutation rate and frequency of mtDNA in ovarian cancer tissue that can affect the efficiency of chemotherapeutic drugs. The varied and multiple mutations of different types enable metabolic reprogramming, cancer cell proliferation, and drug resistance.New specific information on mechanisms underlying several of the mitochondrial dysfunctions has led to proposing various mitochondrial determinants as targets for ovarian cancer therapy, which include targeting specific mitochondrial proteins and phosphoproteins as well as reactive oxygen species (ROS) that accumulate abnormally in cancer cells. Because of the genetically and histologically heterogeneous nature of the disease, combination therapy approaches will be necessary to combat the disease and achieve progress in effective treatment of ovarian cancer. This chapter will address (1) mitochondrial vulnerabilities underlying dysfunction and disease; (2) mitochondrial dysfunction in ovarian cancer; (3) present treatment difficulties for ovarian cancer and new potential treatment strategies to target ovarian cancer mitochondrial metabolism; and (4) biobehavioral factors influencing ovarian cancer development.
Asunto(s)
Proliferación Celular , Mitocondrias , Neoplasias Ováricas , Humanos , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/patología , Proliferación Celular/genética , Especies Reactivas de Oxígeno/metabolismo , Metástasis de la Neoplasia , Microambiente Tumoral , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Resistencia a Antineoplásicos/genéticaRESUMEN
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron-sulfur (Fe-S) cluster biogenesis but is required for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of IBA57 in MMDS3, we have investigated the impact of the pathogenic p.Gly104Cys (c.310G > T) variant on the structural and functional properties of IBA57. The Gly104Cys variant has been associated with a severe MMDS3 phenotype in both compound heterozygous and homozygous states, and defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes have been demonstrated in the affected patients. Size exclusion chromatography, also coupled to multiple angle light scattering, NMR, circular dichroism, and fluorescence spectroscopy characterization has shown that the Gly104Cys variant does not impair the conversion of the homo-dimeric [2Fe-2S]-ISCA22 complex into the hetero-dimeric IBA57-[2Fe-2S]-ISCA2 but significantly affects the stability of IBA57, in both its isolated form and in complex with ISCA2, thus providing a rationale for the severe MMDS3 phenotype associated with this variant.
Asunto(s)
Proteínas Hierro-Azufre , Proteínas Mitocondriales , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Mitocondrias/metabolismo , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , MutaciónRESUMEN
Patients with multiple myeloma (MM) with chromosome 1q21 Gain (1q21+) are clinically and biologically heterogeneous. 1q21+ in the real world actually reflects the prognosis for gain/amplification of the CKS1B gene. In this study, we found that the copy number of prune exopolyphosphatase 1 (PRUNE1), located on chromosome 1q21.3, could further stratify the prognosis of MM patients with 1q21+. Using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS), transmission electron microscopy (TEM), confocal fluorescence microscopy, calculation of adenosine triphosphate (ATP), intracellular reactive oxygen species (ROS) and mitochondrial oxygen consumption rates (OCRs), we demonstrated for the first time that PRUNE1 promotes the proliferation and invasion of MM cells by stimulating purine metabolism, purine synthesis enzymes and mitochondrial functions, enhancing links between purinosomes and mitochondria. SOX11 was identified as a transcription factor for PRUNE1. Through integrated analysis of the transcriptome and proteome, CD73 was determined to be the downstream target of PRUNE1. Furthermore, it has been determined that dipyridamole can effectively suppress the proliferation of MM cells with high-expression levels of PRUNE1 in vitro and in vivo. These findings provide insights into disease-causing mechanisms and new therapeutic targets for MM patients with 1q21+.
Asunto(s)
Mieloma Múltiple , Humanos , Cromatografía Liquida , Aberraciones Cromosómicas , Cromosomas Humanos Par 3 , Mieloma Múltiple/terapia , Pronóstico , Purinas , Espectrometría de Masas en TándemRESUMEN
Drug resistance in fungal pathogens has risen steadily over the past decades due to long-term azole therapy or triazole usage in agriculture. Modification of the drug target protein to prevent drug binding is a major recognized route to induce drug resistance. However, mechanisms for nondrug target-induced resistance remain only loosely defined. Here, we explore the molecular mechanisms of multidrug resistance resulted from an efficient adaptation strategy for survival in drug environments in the human pathogen Aspergillus fumigatus We show that mutants conferring multidrug resistance are linked with mitochondrial dysfunction induced by defects in heme A biosynthesis. Comparison of the gene expression profiles between the drug-resistant mutants and the parental wild-type strain shows that multidrug-resistant transporters, chitin synthases, and calcium-signaling-related genes are significantly up-regulated, while scavenging mitochondrial reactive oxygen species (ROS)-related genes are significantly down-regulated. The up-regulated-expression genes share consensus calcium-dependent serine threonine phosphatase-dependent response elements (the binding sites of calcium-signaling transcription factor CrzA). Accordingly, drug-resistant mutants show enhanced cytosolic Ca2+ transients and persistent nuclear localization of CrzA. In comparison, calcium chelators significantly restore drug susceptibility and increase azole efficacy either in laboratory-derived or in clinic-isolated A. fumigatus strains. Thus, the mitochondrial dysfunction as a fitness cost can trigger calcium signaling and, therefore, globally up-regulate a series of embedding calcineurin-dependent-response-element genes, leading to antifungal resistance. These findings illuminate how fitness cost affects drug resistance and suggest that disruption of calcium signaling might be a promising therapeutic strategy to fight against nondrug target-induced drug resistance.
Asunto(s)
Aspergillus fumigatus/efectos de los fármacos , Señalización del Calcio/fisiología , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Transferasas Alquil y Aril/genética , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Quelantes del Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Quitina Sintasa/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hemo/análogos & derivados , Hemo/biosíntesis , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Fosfoproteínas Fosfatasas/metabolismo , Especies Reactivas de Oxígeno , Factores de Transcripción/metabolismo , Triazoles/farmacologíaRESUMEN
Regardless of the essential role of copper (Cu) in the physiological regulation process of mammalian reproduction, excessive exposure to Cu triggers the meiotic defects of porcine oocytes via compromising the mitochondrial functions. However, the connections between the excessive Cu exposure and meiotic defects of ovine oocytes have not been reported. In this study, the effect of copper sulfate (CuSO4) exposure on the meiotic potentials of ovine oocytes was analyzed. Subsequently, the ameliorative effect of glutathione (GSH) supplementation on the meiotic defects of CuSO4 exposed ovine oocytes was investigated. For these purposes, the in vitro maturation (IVM) of ovine cumulus oocyte complexes (COCs) was conducted in the presence of 5, 10, 20 and 40 µg/mL of CuSO4 supplementation. Subsequently, different concentrations of GSH (2, 4 and 8 mM) were added to the IVM medium containing CuSO4 solution. After IVM, the assay, including nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, mitochondrial function, reactive oxygen species (ROS) generation, apoptosis, epigenetic modification and fertilization capacity of ovine oocytes were performed. The results showed that excessive Cu exposure triggered the meiotic defects of ovine oocytes via promoting the mitochondrial dysfunction related oxidative stress damage. Moreover, the GSH supplementation, not only ameliorated the decreased maturation potential and fertilization defect of CuSO4 exposed oocytes, but inhibited the mitochondrial dysfunction related oxidative stress damage, ROS generation, apoptosis and altered H3K27me3 expression in the CuSO4 exposed oocytes. Combined with the gene expression pattern, the finding in the present study provided fundamental bases for the ameliorative effect of GSH supplementation on the meiotic defects of CuSO4 exposed oocytes via inhibiting the mitochondrial dysfunctions, further benefiting these potential applications of GSH supplementation in the mammalian IVM system and livestock breeding suffering from the excessive Cu exposure.
Asunto(s)
Cobre , Oocitos , Ovinos , Animales , Porcinos , Cobre/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Mitocondrias , Mamíferos/metabolismoRESUMEN
Multiple mitochondrial dysfunctions syndrome type 2 with hyperglycinemia (MMDS2) is a severe disorder of mitochondrial energy metabolism, associated with biallelic mutations in the gene encoding for BOLA3, a protein with a not yet completely understood role in iron-sulfur (Fe-S) cluster biogenesis, but essential for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of BOLA3 in MMDS2, we have investigated the impact of the p.His96Arg (c.287A > G) point mutation, which involves a highly conserved residue, previously identified as a [2Fe-2S] cluster ligand in the BOLA3-[2Fe-2S]-GLRX5 heterocomplex, on the structural and functional properties of BOLA3 protein. The His96Arg mutation has been associated with a severe MMDS2 phenotype, characterized by defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes. Size exclusion chromatography, NMR, UV-visible, circular dichroism, and EPR spectroscopy characterization have shown that the His96Arg mutation does not impair the interaction of BOLA3 with its protein partner GLRX5, but leads to the formation of an aberrant BOLA3-[2Fe-2S]-GLRX5 heterocomplex, that is not functional anymore in the assembly of a [4Fe-4S] cluster on NFU1. These results allowed us to rationalize the severe phenotype observed in MMDS2 caused by His96Arg mutation.
Asunto(s)
Proteínas Hierro-Azufre , Enfermedades Mitocondriales , Humanos , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , MutaciónRESUMEN
Dopaminergic neuroprotection is the main interest in designing novel therapeutics against Parkinson's disease (PD). In the process of dopaminergic degeneration, mitochondrial dysfunctions and inflammation are significant. While the existing drugs provide symptomatic relief against PD, a therapy conferring total neuroprotection by targeting multiple degenerative pathways is still lacking. Garcinia morella is a common constituent of Ayurvedic medication and has been used for the treatment of inflammatory disorders. The present study investigates whether administration of G. morella fruit extract (GME) in MPTP mouse model of PD protects against dopaminergic neurodegeneration, including the underlying pathophysiologies, and reverses the motor behavioural abnormalities. Administration of GME prevented the loss of dopaminergic cell bodies in the substantia nigra and its terminals in the corpus striatum of PD mice. Subsequently, reversal of parkinsonian behavioural abnormalities, viz. akinesia, catalepsy, and rearing, was observed along with the recovery of striatal dopamine and its metabolites in the experimental model. Furthermore, reduced activity of the mitochondrial complex II in the nigrostriatal pathway of brain of the mice was restored after the administration of GME. Also, MPTP-induced enhanced activation of Glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) in the nigrostriatal pathway, which are the markers of inflammatory stress, were found to be ameliorated on GME treatment. Thus, our study presented a novel mode of dopaminergic neuroprotection by G. morella in PD by targeting the mitochondrial dysfunctions and neuroinflammation, which are considered to be intricately associated with the loss of dopaminergic neurons.
Asunto(s)
Garcinia , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Garcinia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuroprotección , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismoRESUMEN
BACKGROUND: Sequence alternations in mitochondrial genomes, especially in genes encoding mitochondrial tRNA (mt-tRNA), were the important contributors to nonsyndromic hearing loss (NSHL); however, the molecular mechanisms remained largely undetermined. METHODS: A maternally transmitted Chinese pedigree with NSHL underwent clinical, genetic, and biochemical assessment. PCR and direct sequence analyses were performed to detect mitochondrial DNA (mtDNA), GJB2, and SLC26A4 gene mutations from matrilineal relatives of this family. Mitochondrial functions including mitochondrial membrane potential (MMP), ATP, and ROS were evaluated in polymononuclear leukocytes (PMNs) derived from three deaf patients and three controls from this pedigree. RESULTS: Four of nine matrilineal relatives developed hearing loss at the variable age of onset. Two putative pathogenic mutations, m.5601C>T in tRNAAla and m.12311T>C in tRNALeu(CUN) , were identified via PCR-Sanger sequencing, as well as 34 variants that belonged to mtDNA haplogroup G2b2. Intriguingly, m.5601C>T mutation resided at very conserved nucleotide in the TψC loop of tRNAAla (position 59), while the T-to-C substitution at position 12311 located at position 48 in the variable stem of tRNALeu(CUN) and was believed to alter the aminoacylation and the steady-state level of tRNA. Biochemical analysis revealed the impairment of mitochondrial functions including the significant reductions of ATP and MMP, whereas markedly increased ROS levels were found in PMNs derived from NSHL patients with m.5601C>T and m.12311T>C mutations. However, we did not detect any mutations in GJB2 and SLC26A4 genes. CONCLUSION: Our data indicated that mt-tRNAAla m.5601C>T and tRNALeu(CUN) 12311T>C mutations were associated with NSHL.
Asunto(s)
ARN de Transferencia de Alanina , ARN de Transferencia de Leucina , Humanos , Adenosina Trifosfato , Sordera , ADN Mitocondrial/genética , Mutación/genética , Especies Reactivas de OxígenoRESUMEN
Accumulating evidences revealed the connections between arsenic exposure and mitochondrial dysfunctions induced reproductive toxicology. Meanwhile, production declines were found in livestock suffering from arsenic exposure. However, the connections between arsenic exposure and livestock meiotic defects remain unclear. In this study, the effects of sodium arsenite (NaAsO2) exposure during the in vitro maturation (IVM) on the meiotic potentials of ovine oocytes were analyzed. Furthermore, the effects of glutathione (GSH) supplementation on the meiotic defects of NaAsO2 exposed ovine oocytes were investigated by the assay of nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, mitochondrial dysfunctions, reactive oxygen species (ROS) accumulation, oxidative DNA damages, cellular apoptosis, epigenetic modifications and fertilization capacities. The results showed that the meiotic defects of NaAsO2 exposed ovine oocytes were effectively ameliorated by the GSH supplementation via the inhibition of mitochondrial dysfunctions, which not only promoted the nuclear maturation, spindle organization, chromosome alignment, cytoskeleton assembly, CGs dynamic and fertilization capacities, but also inhibited the ROS accumulation, oxidative DNA damages and apoptosis of ovine MII oocytes. The abnormal expressions of 5mC, H3K4me3 and H3K9me3 in NaAsO2 exposed ovine oocytes, indicating the abnormal epimutations of DNA methylation and histone methylation, were also effectively ameliorated by the GSH supplementation. Taken together, this study confirmed the connections between arsenic exposure and meiotic defects of ovine oocytes. Meanwhile, the effects of GSH supplementation on the developmental competence of livestock oocytes, especially for these suffering from arsenic exposure were also founded, benefiting the extended researches for the GSH applications.
RESUMEN
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive-behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Asunto(s)
Antipsicóticos/uso terapéutico , Trastorno Bipolar/terapia , Terapia Combinada/métodos , Mitocondrias/metabolismo , Antipsicóticos/farmacología , Trastorno Bipolar/metabolismo , Terapia Cognitivo-Conductual , Suplementos Dietéticos , Dopamina/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Resultado del TratamientoRESUMEN
Multiple mitochondrial dysfunctions syndrome (MMDS) is a rare neurodegenerative disorder associated with mutations in genes with a vital role in the biogenesis of mitochondrial [4Fe-4S] proteins. Mutations in one of these genes encoding for BOLA3 protein lead to MMDS type 2 (MMDS2). Recently, a novel phenotype for MMDS2 with complete clinical recovery was observed in a patient containing a novel variant (c.176G > A, p.Cys59Tyr) in compound heterozygosity. In this work, we aimed to rationalize this unique phenotype observed in MMDS2. To do so, we first investigated the structural impact of the Cys59Tyr mutation on BOLA3 by NMR, and then we analyzed how the mutation affects both the formation of a hetero-complex between BOLA3 and its protein partner GLRX5 and the iron-sulfur cluster-binding properties of the hetero-complex by various spectroscopic techniques and by experimentally driven molecular docking. We show that (1) the mutation structurally perturbed the iron-sulfur cluster-binding region of BOLA3, but without abolishing [2Fe-2S]2+ cluster-binding on the hetero-complex; (2) tyrosine 59 did not replace cysteine 59 as iron-sulfur cluster ligand; and (3) the mutation promoted the formation of an aberrant apo C59Y BOLA3-GLRX5 complex. All these aspects allowed us to rationalize the unique phenotype observed in MMDS2 caused by Cys59Tyr mutation.
Asunto(s)
Glutarredoxinas/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Cisteína/genética , Glutarredoxinas/ultraestructura , Humanos , Proteínas Hierro-Azufre/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Simulación del Acoplamiento Molecular , Complejos Multiproteicos , Mutación , Resonancia Magnética Nuclear Biomolecular , FenotipoRESUMEN
Pulmonary hypertension (pHTN) is a severe, life-threatening disease, which can be idiopathic or associated with an underlying syndrome or genetic diagnosis. Here we discuss a patient who presented with severe pHTN and was later found to be compound heterozygous for pathogenic variants in the NFU1 gene causing multiple mitochondrial dysfunctions syndrome 1 (MMDS1). Review of autopsy slides from an older sibling revealed the same diagnosis along with pulmonary findings consistent with a developmental lung disorder. In particular, these postmortem, autopsy findings have not been described previously in humans with this mitochondrial syndrome and suggest a possible developmental basis for the severe pHTN seen in this disease. Given the rarity of patients reported with MMDS1, we review the current state of knowledge of this disease and our novel management strategies for pHTN and MMDS1-associated complications in this population.
Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/etiología , Hipertensión Pulmonar/etiología , Enfermedades Mitocondriales/complicaciones , Mutación , Discapacidades del Desarrollo/patología , Femenino , Humanos , Hipertensión Pulmonar/patología , Recién Nacido , Masculino , Enfermedades Mitocondriales/genética , PronósticoRESUMEN
Autism spectrum disorders (ASDs) constitute a set of heterogeneous neurodevelopmental conditions, characterized by a wide genetic variability that has led to hypothesize a polygenic origin. The metabolic profiles of patients with ASD suggest a possible implication of mitochondrial pathways. Although different physiological and biochemical studies reported deficits in mitochondrial oxidative phosphorylation in subjects with ASD, the role of mitochondrial DNA variations has remained relatively unexplored. In this review, we report and discuss very recent evidence to demonstrate the key role of mitochondrial disorders in the development of ASD.
Asunto(s)
Trastorno del Espectro Autista/patología , Mitocondrias/patología , Modelos Biológicos , Trastorno del Espectro Autista/genética , Preescolar , ADN Mitocondrial/genética , Genes Mitocondriales , Heteroplasmia/genética , Humanos , Mitocondrias/genéticaRESUMEN
Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma.
Asunto(s)
Antineoplásicos/farmacología , Nanopartículas del Metal/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Platino (Metal)/farmacología , Tretinoina/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/análisis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Proteínas de Neoplasias/metabolismo , Neuroblastoma/patología , Estrés Oxidativo/efectos de los fármacos , Péptido Hidrolasas/análisis , Platino (Metal)/administración & dosificación , Platino (Metal)/toxicidad , Tretinoina/administración & dosificación , beta Caroteno/farmacologíaRESUMEN
OBJECTIVE: The high-fat diet (HFD)-induced obesity is responsible for the testosterone deficiency (TD). However, the mechanism remains unknown. Mitochondrial homeostasis is proved to be important for maintaining the function of steroidogenic acute regulatory protein (StAR), the first rate-limiting enzyme in testosterone synthesis. As the key regulator of mitochondrial membrane permeability, cyclophilin D (CypD) plays a crucial role in maintaining mitochondrial function. In this study, we sought to elucidate the role of CypD in the expression of StAR affected by HFD. METHODS: To analyse the influence of CypD on StAR in vivo and in vitro, mouse models of HFD, CypD overexpression and CypD knockout (Ppif-/- ) as well as Leydig cells treated with palmitic acid (PA) and CypD overexpression plasmids were examined with an array of metabolic, mitochondrial function and molecular assays. RESULTS: Compared with the normal diet mice, consistent with reduced testosterone in testes, the expressions of StAR in both mRNA and protein levels in HFD mice were down-regulated, while expressions of CypD were up-regulated. High-fat intake impaired mitochondrial function with the decrease in StAR in Leydig cells. Overexpression of CypD inhibited StAR expressions in vivo and in vitro. Compared with C57BL/6 mice with HFD, expressions of StAR were improved in Ppif-/- mice with HFD. CONCLUSIONS: Mitochondrial CypD involved in the inhibitory effect of HFD on StAR expression in testes.
Asunto(s)
Dieta Alta en Grasa , Peptidil-Prolil Isomerasa F/metabolismo , Fosfoproteínas/metabolismo , Animales , Regulación hacia Abajo/genética , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/ultraestructura , Metabolismo de los Lípidos , Lípidos/toxicidad , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Fosfoproteínas/genética , Regulación hacia Arriba/genéticaRESUMEN
The eukaryotic F1FO-ATP synthase/hydrolase activity is coupled to H+ translocation through the inner mitochondrial membrane. According to a recent model, two asymmetric H+ half-channels in the a subunit translate a transmembrane vertical H+ flux into the rotor rotation required for ATP synthesis/hydrolysis. Along the H+ pathway, conserved aminoacid residues, mainly glutamate, address H+ both in the downhill and uphill transmembrane movements to synthesize or hydrolyze ATP, respectively. Point mutations responsible for these aminoacid changes affect H+ transfer through the membrane and, as a cascade, result in mitochondrial dysfunctions and related pathologies. The involvement of specific aminoacid residues in driving H+ along their transmembrane pathway within a subunit, sustained by the literature and calculated data, leads to depict a model consistent with some mitochondrial disorders.
Asunto(s)
Aminoácidos/metabolismo , Hidrógeno/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Humanos , Hidrólisis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/química , Conformación ProteicaRESUMEN
BACKGROUND AND AIMS: Endoplasmic reticulum (ER) stress is a growing concern for drug-induced toxicity which causes several side effects. Ritonavir, a potent HIV protease inhibitor, induces both ER and mitochondrial stress; however, the missing link between ER stress and mitochondrial damage has been unknown. In the present study, we have studied the sequential events that occur during ritonavir-induced cell cytotoxicity and elucidate the link between ER stress and mitochondrial damage. METHODS: Cytotoxicity of ritonavir was calculated on different cells; Huh-7.5, 293T, HeLa, and Hepa RG cells using the MTT assay and also by measuring total protein content. Cellular stress response was evaluated by RT-PCR for stress marker genes. Entry of drug into the mitochondrial compartment was evaluated by HPLC. Mitochondria-mediated apoptosis was analyzed by western blotting. RESULTS: Ritonavir treatment initially triggered ER stress during the early hours of treatment. Consequently, the BAX was activated which permeabilized the mitochondrial outer membrane. Simultaneously, upon entry of the drug into the mitochondrial compartment, change in mitochondrial membrane potential was observed which led to the release of cytochrome c in the cytoplasm. Release of cytochrome c activated mitochondria-mediated apoptosis by the activation of caspase-9/7 and parp-1. CONCLUSION: The cytotoxic effects of ritonavir involved the interplay of ER stress and mitochondria-mediated apoptosis. This unusual mechanism of drug-induced toxicity expands our knowledge in understanding side effects caused by ritonavir.