Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(18): 5685-90, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25902503

RESUMEN

Mitochondrial proton-pumping NADH:ubiquinone oxidoreductase (respiratory complex I) comprises more than 40 polypeptides and contains eight canonical FeS clusters. The integration of subunits and insertion of cofactors into the nascent complex is a complicated multistep process that is aided by assembly factors. We show that the accessory NUMM subunit of complex I (human NDUFS6) harbors a Zn-binding site and resolve its position by X-ray crystallography. Chromosomal deletion of the NUMM gene or mutation of Zn-binding residues blocked a late step of complex I assembly. An accumulating assembly intermediate lacked accessory subunit N7BM (NDUFA12), whereas a paralog of this subunit, the assembly factor N7BML (NDUFAF2), was found firmly bound instead. EPR spectroscopic analysis and metal content determination after chromatographic purification of the assembly intermediate showed that NUMM is required for insertion or stabilization of FeS cluster N4.


Asunto(s)
Mitocondrias/metabolismo , NADH Deshidrogenasa/química , Zinc/química , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Complejo I de Transporte de Electrón/metabolismo , Electroforesis , Eliminación de Gen , Humanos , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteómica , Espectrofotometría
2.
Biochim Biophys Acta Bioenerg ; 1858(2): 175-181, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27871794

RESUMEN

Mitochondrial complex I is an intricate 1MDa membrane protein complex with a central role in aerobic energy metabolism. The minimal form of complex I consists of fourteen central subunits that are conserved from bacteria to man. In addition, eukaryotic complex I comprises some 30 accessory subunits of largely unknown function. The gene for the accessory NDUFS4 subunit of human complex I is a hot spot for fatal pathogenic mutations in humans. We have deleted the gene for the orthologous NUYM subunit in the aerobic yeast Yarrowia lipolytica, an established model system to study eukaryotic complex I and complex I linked diseases. We observed assembly of complex I which lacked only subunit NUYM and retained weak interaction with assembly factor N7BML (human NDUFAF2). Absence of NUYM caused distortion of iron sulfur clusters of the electron input domain leading to decreased complex I activity and increased release of reactive oxygen species. We conclude that NUYM has an important stabilizing function for the electron input module of complex I and is essential for proper complex I function.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , NADH Deshidrogenasa/metabolismo , Yarrowia/metabolismo , Electrones , Metabolismo Energético/fisiología , Proteínas Fúngicas/metabolismo , Humanos , Mitocondrias/metabolismo , Subunidades de Proteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Mol Genet Metab ; 118(4): 296-303, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27344355

RESUMEN

The Old Order Amish populations in the US are one of the Plain People groups and are descendants of the Swiss Anabaptist immigrants who came to North America in the early eighteenth century. They live in numerous small endogamous demes that have resulted in reduced genetic diversity along with a high prevalence of specific genetic disorders, many of them autosomal recessive. Mitochondrial respiratory chain deficiencies arising from mitochondrial or nuclear DNA mutations have not previously been reported in the Plain populations. Here we present four different Amish families with mitochondrial respiratory chain disorders. Mutations in two mitochondrial encoded genes leading to mitochondrial respiratory chain disorder were identified in two patients. In the first case, MELAS syndrome caused by a mitochondrial DNA (mtDNA) mutation (m.3243A>G) was identified in an extended Amish pedigree following a presentation of metabolic strokes in the proband. Characterization of the extended family of the proband by a high resolution melting assay identified the same mutation in many previously undiagnosed family members with a wide range of clinical symptoms. A MELAS/Leigh syndrome phenotype caused by a mtDNA mutation [m.13513G>A; p.Asp393Asn] in the ND5 gene encoding the ND5 subunit of respiratory chain complex I was identified in a patient in a second family. Mutations in two nuclear encoded genes leading to mitochondrial respiratory chain disorder were also identified in two patients. One patient presented with Leigh syndrome and had a homozygous deletion in the NDUFAF2 gene, while the second patient had a homozygous mutation in the POLG gene, [c.1399G>A; p.Ala467Thr]. Our findings identify mitochondrial respiratory chain deficiency as a cause of disease in the Old Order Amish that must be considered in the context of otherwise unexplained systemic disease, especially if neuromuscular symptoms are present.


Asunto(s)
ADN Polimerasa gamma/genética , Complejo I de Transporte de Electrón/genética , Enfermedad de Leigh/genética , Síndrome MELAS/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Adolescente , Amish/genética , Niño , Preescolar , ADN Mitocondrial/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/diagnóstico por imagen , Enfermedad de Leigh/fisiopatología , Síndrome MELAS/diagnóstico por imagen , Síndrome MELAS/fisiopatología , Imagen por Resonancia Magnética , Mitocondrias/genética , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/fisiopatología , Mutación/genética , América del Norte , Linaje , Fenotipo
4.
Orphanet J Rare Dis ; 19(1): 92, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419071

RESUMEN

BACKGROUND: Congenital disorders of the mitochondrial respiratory chain are a heterogeneous group of inborn errors of metabolism. Among them, NADH:ubiquinone oxidoreductase (complex I, CI) deficiency is the most common. Biallelic pathogenic variants in NDUFAF2, encoding the nuclear assembly CI factor NDUFAF2, were initially reported to cause progressive encephalopathy beginning in infancy. Since the initial report in 2005, less than a dozen patients with NDUFAF2-related disease have been reported. METHODS: Clinical, biochemical, and neuroradiological features of four new patients residing in Northern Israel were collected during 2016-2022 at Emek Medical Center. Enzymatic activities of the five respiratory-chain complexes were determined in isolated fibroblast mitochondria by spectrophotometric methods. Western blot analyses were conducted with anti-human NDUFAF2 antibody; antibody against the mitochondrial marker VDAC1 was used as a loading control. Genetic studies were performed by chromosome microarray analysis using Affymetrix CytoScan 750 K arrays. RESULTS: All four patients presented with infantile-onset growth retardation, ophthalmological impairments with nystagmus, strabismus (starting between 5 and 9 months), and further progressed to life-threatening episodes of apnea usually triggered by trivial febrile illnesses (between 10 and 18 months) with gradual loss of acquired developmental milestones (3 of 4 patients). Serial magnetic-resonance imaging studies in two of the four patients showed a progressive pattern of abnormal T2-weighted hyperintense signals involving primarily the brainstem, the upper cervical cord, and later, the basal ganglia and thalami. Magnetic-resonance spectroscopy in one patient showed an increased lactate peak. Disease progression was marked by ventilatory dependency and early lethality. 3 of the 4 patients tested, harbored a homozygous 142-kb partial interstitial deletion that omits exons 2-4 of NDUFAF2. Mitochondrial CI activity was significantly decreased in the only patient tested. Western blot analysis disclosed the absence of NDUFAF2 protein compared to normal controls. In addition, we reviewed all 10 previously reported NDUFAF2-deficient cases to better characterize the disease. CONCLUSIONS: Biallelic loss-of-function mutations in NDUFAF2 result in a distinctive phenotype in the spectrum of Leigh syndrome with clinical and neuroradiological features that are primarily attributed to progressive brainstem damage.


Asunto(s)
Enfermedad de Leigh , Enfermedades Neurodegenerativas , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Tronco Encefálico/patología , Mutación/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
5.
Redox Rep ; 28(1): 2168635, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36738241

RESUMEN

BACKGROUND: Methionine sulfoxide reductases are found in all aerobic organisms. They function in antioxidant defense, cellular regulation by reversible oxidation of methionine in proteins, and in protein structure. However, very few in vivo binding partners or substrates of the reductases have been identified. METHODS: We implemented a proximity labeling method, TurboID, to covalently link mitochondrial methionine sulfoxide reductase A (MSRA) to its binding partners in HEK293 cells. Proteomic analyses were performed to identify putative binding partners. RESULTS: We show that human Ndufaf2, also called mimitin, is a binding partner of MSRA as well as all 3 MSRBs. We found that both methionine residues in Ndufaf2 were susceptible to oxidation by hydrogen peroxide and that the methionine sulfoxide reductases can reduce these methionine sulfoxide residues back to methionine. CONCLUSION: Methionine sulfoxide reductases can reduce methionine sulfoxide back to methionine in Ndufaf2. In addition to a repair function, it also creates a mechanism that could regulate cellular processes by modulation of methionine oxidation in Ndufaf2.


Asunto(s)
Metionina Sulfóxido Reductasas , Proteómica , Humanos , Metionina Sulfóxido Reductasas/metabolismo , Células HEK293 , Estrés Oxidativo , Metionina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Mitocondriales/metabolismo
6.
Brain Res ; 1767: 147434, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33745923

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease manifesting both motor and non-motor symptoms. The motor features are generally ascribed to the selective loss of dopamine neurons within the substantia nigra pars compacta. While the precise etiology of PD remains elusive, multiple genetic and environmental elements have emerged as contributing factors. The discovery of MPTP-induced parkinsonism directed intense inquiry towards mitochondrial pathways, with a specific focus on mitochondrial complex I. Consisting of more than 40 subunits, complex I is the first enzyme of the electron transport chain that is required for mitochondrial ATP production. In this review, we present a critical analysis of studies assessing the prevalence and specificity of mitochondrial complex I deficiency in PD. In addition, we take the novel view of incorporating the features of genetically-defined bona fide complex I disorders and the prevalence of nigral involvement in such cases. Through this innovative bi-directional view, we consider both complex I changes in a disease of the substantia nigra and nigral changes in diseases of complex I. We assess the strength of association between nigral cell loss and complex I deficits, as well as the oft under-appreciated heterogeneity of complex I deficiency disorders and the variability of the PD data.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Enfermedad de Parkinson/fisiopatología , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA