Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ecol Lett ; 27(2): e14380, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348625

RESUMEN

Single phenological measures, like the average rate of phenological advancement, may be insufficient to explain how climate change is driving trends in animal populations. Here, we develop a multifactorial concept of spring phenology-including the onset of spring, spring duration, interannual variability, and their temporal changes-as a driver for population dynamics of migratory terrestrial species in seasonal environments. Using this conceptual model, we found that effects of advancing spring phenology on animal populations may be buffered or amplified depending on the duration and interannual variability of spring green-up, and those effects are modified by evolutionary and plastic adaptations of species. Furthermore, we compared our modelling results with empirical data on normalized difference vegetation index-based spring green-up phenology and population trends of 106 European landbird finding similar associations. We conclude how phenological changes are expected to affect migratory bird populations across Europe and identify regions that are particularly prone to suffer population declines.


Asunto(s)
Migración Animal , Cambio Climático , Animales , Estaciones del Año , Europa (Continente) , Aves , Temperatura
2.
Glob Chang Biol ; 30(5): e17335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771086

RESUMEN

Global climate change has altered the timing of seasonal events (i.e., phenology) for a diverse range of biota. Within and among species, however, the degree to which alterations in phenology match climate variability differ substantially. To better understand factors driving these differences, we evaluated variation in timing of nesting of eight Arctic-breeding shorebird species at 18 sites over a 23-year period. We used the Normalized Difference Vegetation Index as a proxy to determine the start of spring (SOS) growing season and quantified relationships between SOS and nest initiation dates as a measure of phenological responsiveness. Among species, we tested four life history traits (migration distance, seasonal timing of breeding, female body mass, expected female reproductive effort) as species-level predictors of responsiveness. For one species (Semipalmated Sandpiper), we also evaluated whether responsiveness varied across sites. Although no species in our study completely tracked annual variation in SOS, phenological responses were strongest for Western Sandpipers, Pectoral Sandpipers, and Red Phalaropes. Migration distance was the strongest additional predictor of responsiveness, with longer-distance migrant species generally tracking variation in SOS more closely than species that migrate shorter distances. Semipalmated Sandpipers are a widely distributed species, but adjustments in timing of nesting relative to variability in SOS did not vary across sites, suggesting that different breeding populations of this species were equally responsive to climate cues despite differing migration strategies. Our results unexpectedly show that long-distance migrants are more sensitive to local environmental conditions, which may help them to adapt to ongoing changes in climate.


Asunto(s)
Migración Animal , Cambio Climático , Comportamiento de Nidificación , Estaciones del Año , Animales , Regiones Árticas , Migración Animal/fisiología , Femenino , Charadriiformes/fisiología , Reproducción
3.
Glob Chang Biol ; 30(1): e17044, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994481

RESUMEN

Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather-driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather-driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.


Asunto(s)
Mariposas Diurnas , Nieve , Animales , Estaciones del Año , Mariposas Diurnas/fisiología , Teorema de Bayes , Tiempo (Meteorología) , Cambio Climático , Ecosistema
4.
Glob Chang Biol ; 30(8): e17461, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39199008

RESUMEN

Monitoring agriculture by remote sensing enables large-scale evaluation of biomass production across space and time. The normalized difference vegetation index (NDVI) is used as a proxy for green biomass. Here, we used satellite-derived NDVI of arable farms in the Netherlands to evaluate changes in biomass following conversion from conventional to organic farming. We compared NDVI and the stability of NDVI across 72 fields on sand and marine clay soils. Thirty-six of these fields had been converted into organic agriculture between 0 and 50 years ago (with 2017 as reference year), while the other 36 were paired control fields where conventional farming continued. We used high-resolution images from the Sentinel-2 satellite to obtain NDVI estimates across 5 years (January 2016-October 2020). Overall, NDVI did not differ between conventional and organic management during the time series, but NDVI stability was significantly higher under organic management. NDVI was lower under organic management in sandy, but not in clay, soils. Organic farms that had been converted less than ~19 years ago had lower NDVI than conventional farms. However, the difference diminished over time and eventually turned positive after ~19 years since the conversion. NDVI, averaged across the 5 years of study, was positively correlated to soil Olsen-P measured from soil samples collected in 2017. We conclude that NDVI in organic fields was more stable than in conventional fields, and that the lower biomass in the early years since the transition to organic agriculture can be overcome with time. Our study also indicates the role of soil P bioavailability for plant biomass production across the examined fields, and the benefit of combining remote sensing with on-site soil measurements to develop a more mechanistic understanding that may help us navigate the transition to a more sustainable type of agriculture.


Asunto(s)
Agricultura , Biomasa , Agricultura Orgánica , Suelo , Países Bajos , Suelo/química , Agricultura Orgánica/métodos , Agricultura/métodos , Tecnología de Sensores Remotos
5.
Glob Chang Biol ; 30(6): e17374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863181

RESUMEN

In this Technical Advance, we describe a novel method to improve ecological interpretation of remotely sensed vegetation greenness measurements that involved sampling 24,395 Landsat pixels (30 m) across 639 km of Alaska's central Brooks Range. The method goes well beyond the spatial scale of traditional plot-based sampling and thereby more thoroughly relates ground-based observations to satellite measurements. Our example dataset illustrates that, along the boreal-Arctic boundary, vegetation with the greatest Landsat Normalized Difference Vegetation Index (NDVI) is taller than 1 m, woody, and deciduous; whereas vegetation with lower NDVI tends to be shorter, evergreen, or non-woody. The field methods and associated analyses advance efforts to inform satellite data with ground-based vegetation observations using field samples collected at spatial scales that closely match the resolution of remotely sensed imagery.


Asunto(s)
Imágenes Satelitales , Tundra , Alaska , Regiones Árticas , Tecnología de Sensores Remotos/métodos , Taiga , Monitoreo del Ambiente/métodos
6.
Glob Chang Biol ; 30(1): e17087, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273494

RESUMEN

Increasing temperatures and winter precipitation can influence the carbon (C) exchange rates in arctic ecosystems. Feedbacks can be both positive and negative, but the net effects are unclear and expected to vary strongly across the Arctic. There is a lack of understanding of the combined effects of increased summer warming and winter precipitation on the C balance in these ecosystems. Here we assess the short-term (1-3 years) and long-term (5-8 years) effects of increased snow depth (snow fences) (on average + 70 cm) and warming (open top chambers; 1-3°C increase) and the combination in a factorial design on all key components of the daytime carbon dioxide (CO2 ) fluxes in a wide-spread heath tundra ecosystem in West Greenland. The warming treatment increased ecosystem respiration (ER) on a short- and long-term basis, while gross ecosystem photosynthesis (GEP) was only increased in the long term. Despite the difference in the timing of responses of ER and GEP to the warming treatment, the net ecosystem exchange (NEE) of CO2 was unaffected in the short term and in the long term. Although the structural equation model (SEM) indicates a direct relationship between seasonal accumulated snow depth and ER and GEP, there were no significant effects of the snow addition treatment on ER or GEP measured over the summer period. The combination of warming and snow addition turned the plots into net daytime CO2 sources during the growing season. Interestingly, despite no significant changes in air temperature during the snow-free time during the experiment, control plots as well as warming plots revealed significantly higher ER and GEP in the long term compared to the short term. This was in line with the satellite-derived time-integrated normalized difference vegetation index of the study area, suggesting that more factors than air temperature are drivers for changes in arctic tundra ecosystems.


Asunto(s)
Dióxido de Carbono , Ecosistema , Estaciones del Año , Dióxido de Carbono/química , Temperatura , Nieve , Tundra , Regiones Árticas , Suelo/química
7.
Environ Res ; 261: 119703, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117055

RESUMEN

This study investigated the role of present vegetation in improving air quality in Bucharest (Romania) by analyzing six years of air quality data (PM10 and NO2) from multiple monitoring stations. The target value for human health protection is regularly exceeded for PM10 and not for NO2 over time. Road traffic has substantially contributed (over 70%) to ambient PM10 and NO2 levels. The results showed high seasonal variations in pollutant concentrations, with a pronounced effect of vegetation in reducing PM10 and NO2 levels. Indeed, air quality improvements of 7% for PM10 and 25% for NO2 during the growing season were reported. By using Principal Component Analysis and pollution data subtraction methodology, we have disentangled the impact of vegetation on air pollution and observed distinct annual patterns, particularly higher differences in PM10 and NO2 concentrations during the warm season. Despite limitations such as a lack of full tree inventory for Bucharest and a limited number of monitoring stations, the study highlighted the efficiency of urban vegetation to mitigate air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Dióxido de Nitrógeno , Material Particulado , Estaciones del Año , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , Contaminación del Aire/análisis , Plantas , Análisis de Componente Principal
8.
Environ Res ; 247: 118166, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220079

RESUMEN

The existing evidence on the association between greenness and respiratory outcomes remains inconclusive. We aimed at systematically summarizing existing literature on greenness exposure and respiratory outcomes in European children and adolescents, with a preliminary attempt to qualify the distribution of dominant tree species across different geographical areas and bioclimatic regions. Overall, 4049 studies were firstly identified by searching PubMed/MEDLINE, EMBASE, Scopus, Web of Science, GreenFile and CAB direct, up to 29 August 2023. Eighteen primary studies were included in the systematic review and six were meta-analyzed. No overall significant association was observed between the Normalized Difference Vegetation Index, assessed within 500-m buffers (i.e. NDVI-500), and the odds of asthma for 0.3-increase in the exposure (OR: 0.97, 95% CI from 0.53 to 1.78). Similarly, an overall exposure to the NDVI-300 highest tertile, as compared to the lowest tertile, was not significantly associated with asthma (OR: 0.65, 95% CI from 0.22 to 1.91): heterogeneity among studies was significant (p = 0.021). We delineated some key elements that might have mostly contributed to the lack of scientific consensus on this topic, starting from the urgent need of harmonized approaches for the operational definition of greenness. Additionally, the complex interplay between greenness and respiratory health may vary across different geographical regions and climatic conditions. At last, the inconsistent findings may reflect the heterogeneity and complexity of this relationship, rather than a lack of scientific consensus itself. Future research should compare geographical areas with similar bioclimatic parameters and dominant or potentially present vegetation species, in order to achieve a higher inter-study comparability.


Asunto(s)
Asma , Europa (Continente)/epidemiología , Humanos , Adolescente , Niño , Asma/epidemiología , Exposición a Riesgos Ambientales
9.
Environ Res ; 263(Pt 1): 120068, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39341534

RESUMEN

INTRODUCTION: Studies on greenspace and lung function in adults produced divergent results. Some of the adverse findings could be due to long-term exposure to allergenic tree pollen. We investigated whether having more birch trees or more allergenic trees around home is related to worse lung function and whether these exposures confound the association between greenspace and lung function. METHODS: The analytic sample consisted of 874 adults aged 20-44 years at baseline from the German study centers, Erfurt and Hamburg, of the ECRHS cohort study. Spirometric lung function was measured in 1991/92, 2000/01, and 2011/12. We counted trees based on tree registries and classified them into allergenic and non-allergenic. We assessed exposure to greenspace with the normalized difference vegetation index (NDVI), tree cover density, and total number of trees in a 300 m buffer around home. Linear mixed models were used. RESULTS: The forced expiratory volume in 1 s (FEV1) and the forced vital capacity (FVC) were decreased in the presence of more birch trees after adjusting for confounders and co-exposures. For every 10 additional birch trees in a 300 m buffer around home, the average change in FEV1 was -27.6 mL (95% confidence interval (CI): [-58.7, 3.5]). For FVC the average change was -28.2 mL (95% CI: [-62.0, 5.6]). No consistent associations were found for allergenic trees, total trees, tree cover density, or NDVI. Unlike other associations, those of birch trees with FEV1 and FVC were not moderated by allergic sensitization to birch pollen, history of asthma symptoms or nasal allergies including hay fever, ozone, NO2, or age. DISCUSSION: Living close to birch trees had an adverse long-term association with lung function. That tree registries were limited to street trees prevented us from answering the question of a potential confounding of greenspace effects by allergenic neighborhood trees.

10.
Environ Res ; 260: 119438, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901815

RESUMEN

BACKGROUND: Studies suggest that greater exposure to natural vegetation (i.e., greenness) is associated with better mental health. However, there is limited research on greenness and mental health in the preconception period, a critical window of exposure in the life course. We investigated the associations of residential greenness with perceived stress and depressive symptoms using cross-sectional data from a cohort of pregnancy planners. METHODS: From 2013 to 2019, we enrolled female-identified participants aged 21-45 years who were trying to conceive without the use of fertility treatment into a North American preconception cohort study (Pregnancy Study Online [PRESTO]). On the baseline questionnaire, participants completed the 10-item Perceived Stress Scale (PSS) and the Major Depression Inventory (MDI). Using geocoded addresses, we estimated residential greenness exposure via satellite imagery (Normalized Difference Vegetation Index [NDVI]) in a 100m buffer. We estimated mean differences and 95% confidence intervals for the association of greenness with perceived stress and depression scores using linear regression models, adjusting for individual and neighborhood sociodemographic characteristics. We also evaluated the extent to which associations were modified by urbanicity and neighborhood socioeconomic status (SES). RESULTS: Among 9718 participants, mean age was 29.9 years, 81.5% identified as non-Hispanic White, 25% had household incomes <$50,000, and mean neighborhood income was $61,932. In adjusted models, higher greenness was associated with lower stress and depression scores (mean difference per interquartile range in greenness: -0.20, 95% CI: -0.39, -0.01; and -0.19, 95% CI: -0.48, 0.10, respectively). The association was stronger among residents of lower SES neighborhoods in urban areas (PSS: -0.57, 95% CI: -1.00, -0.15; MDI: -0.72, 95% CI: -1.40, -0.04). CONCLUSIONS: Higher greenness exposure was associated with lower stress and depressive symptoms among pregnancy planners, particularly in lower-SES neighborhoods.


Asunto(s)
Depresión , Características de la Residencia , Estrés Psicológico , Humanos , Adulto , Femenino , Depresión/epidemiología , Estrés Psicológico/epidemiología , Adulto Joven , Estudios Transversales , Estudios de Cohortes , Persona de Mediana Edad , América del Norte/epidemiología
11.
Environ Res ; 250: 118483, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373553

RESUMEN

Reports on Groundwater level variations and quality changes have been a critical issue, especially in arid regions. An attempt has been made in this study to determine the surface manifestations of groundwater variations through processing imageries for determining the changes in land use, Normalized Differential Building Index (NDBI), Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), along with Groundwater level (GWL) and Electrical conductivity (EC). Decadal variation between these parameters for 2013 and 2023 shows that the average water level had increased by 1.03amsl, while the EC values of groundwater decreased by 418 µS/cm. The decrease in EC values indicates freshwater recharge, promoting natural vegetation, thus reducing the LST values by 3.28 °C. In addition, urban landscaping and relatively lesser emissivity from built-up surfaces than the sandy desert have further reduced the LST. The interrelationship of the parameters indicates that an increase in LST correlates with an increase in NDBI and with less significant changes in NDVI. The lowering of the LST along the coastal regions was inferred to be due to the influence of Sea breeze, adjacent moisture from the ocean, shallow water level, and the shadow effect of the buildings. Further, the increase in water level was mainly attributed to the recent increase in rainfall and the extreme event in 2018. The higher EC in the lesser NDBI regions is attributed to the anthropogenic contamination from agriculture and landfill leachates. Though there was an increase in NDBI, the LST of the region was inferred to be reduced mainly due to the increase in water level and reduction of emission from desert sand by recent urban developments.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Agua Subterránea/análisis , Agua Subterránea/química , Monitoreo del Ambiente/métodos , Microclima , Clima Desértico , Temperatura , China , Conductividad Eléctrica
12.
Med Vet Entomol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783513

RESUMEN

Culicoides imicola is the main vector of viral diseases of livestock in Europe such as bluetongue (BT), African horse sickness and epizootic haemorrhagic disease. Climatic factors are the main drivers of C. imicola occurrence and its distribution might be subject to rapid shifts due to climate change. Entomological data, collected during BT surveillance, and climatic/environmental variables were used to analyse ecological niche and to model C. imicola distribution and possible future range shifts in Italy. An ensemble technique was used to weigh the performance of machine learning, linear and profile methods. Updated future climate projections from the latest phase of the Climate Model Intercomparison Project were used to generate future distributions for the next three 20-year periods, according to combinations of general circulation models and shared socioeconomic pathways and considering different climate change scenarios. Results indicated the minimum temperature of the coldest month (BIO 6) and precipitation of the driest-warmest months (BIO 14) as the main limiting climatic factors. Indeed, BIO 6 and BIO 14 reported the two highest values of variable importance, respectively, 9.16% (confidence interval [CI] = 7.99%-10.32%), and 2.01% (CI = 1.57%-2.44%). Under the worst-case scenario of climate change, C. imicola range is expected to expand northward and shift away from the coasts of central Italy, while in some areas of southern Italy, environmental suitability will decrease. Our results provide predictions of C. imicola distribution according to the most up-to-date future climate projections and should be of great use to surveillance management at regional and national scales.

13.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161277

RESUMEN

Riparian ecosystems fundamentally depend on groundwater, especially in dryland regions, yet their water requirements and sources are rarely considered in water resource management decisions. Until recently, technological limitations and data gaps have hindered assessment of groundwater influences on riparian ecosystem health at the spatial and temporal scales relevant to policy and management. Here, we analyze Sentinel-2-derived normalized difference vegetation index (NDVI; n = 5,335,472 observations), field-based groundwater elevation (n = 32,051 observations), and streamflow alteration data for riparian woodland communities (n = 22,153 polygons) over a 5-y period (2015 to 2020) across California. We find that riparian woodlands exhibit a stress response to deeper groundwater, as evidenced by concurrent declines in greenness represented by NDVI. Furthermore, we find greater seasonal coupling of canopy greenness to groundwater for vegetation along streams with natural flow regimes in comparison with anthropogenically altered streams, particularly in the most water-limited regions. These patterns suggest that many riparian woodlands in California are subsidized by water management practices. Riparian woodland communities rely on naturally variable groundwater and streamflow components to sustain key ecological processes, such as recruitment and succession. Altered flow regimes, which stabilize streamflow throughout the year and artificially enhance water supplies to riparian vegetation in the dry season, disrupt the seasonal cycles of abiotic drivers to which these Mediterranean forests are adapted. Consequently, our analysis suggests that many riparian ecosystems have become reliant on anthropogenically altered flow regimes, making them more vulnerable and less resilient to rapid hydrologic change, potentially leading to future riparian forest loss across increasingly stressed dryland regions.


Asunto(s)
Bosques , Agua Subterránea , Actividades Humanas , Ríos , California , Geografía , Humanos , Hidrología , Modelos Lineales , Plantas , Tecnología de Sensores Remotos , Reología , Propiedades de Superficie , Agua
14.
Int J Biometeorol ; 68(4): 701-717, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38236422

RESUMEN

The Great Lakes region of North America has warmed by 1-2 °C on average since pre-industrial times, with the most pronounced changes observable during winter and spring. Interannual variability in temperatures remains high, however, due to the influence of ocean-atmosphere circulation patterns that modulate the warming trend across years. Variations in spring temperatures determine growing season length and plant phenology, with implications for whole ecosystem function. Studying how both internal climate variability and the "secular" warming trend interact to produce trends in temperature is necessary to estimate potential ecological responses to future warming scenarios. This study examines how external anthropogenic forcing and decadal-scale variability influence spring temperatures across the western Great Lakes region and estimates the sensitivity of regional forests to temperature using long-term growth records from tree-rings and satellite data. Using a modeling approach designed to test for regime shifts in dynamic time series, this work shows that mid-continent spring climatology was strongly influenced by the 1976/1977 phase change in North Pacific atmospheric circulation, and that regional forests show a strengthening response to spring temperatures during the last half-century.


Asunto(s)
Ecosistema , Bosques , Estaciones del Año , Clima , Temperatura , Cambio Climático , Great Lakes Region
15.
Int J Biometeorol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373934

RESUMEN

Determining the factors that drive vegetation variation is complicated by the intricate interactions between climatic and anthropogenic influences. Neglecting the short-term time-lag and cumulative effects of climate on vegetation growth (i.e., temporal effects) exacerbates the uncertainty in attributing long-term vegetation dynamics. This study evaluated the climatic and anthropogenic influences on vegetation dynamics in China from 2000 to 2019 by analyzing normalized difference vegetation index (NDVI), temperature, precipitation, solar radiation, and ten anthropogenic indicators through linear regression, correlation, multiple linear regression (MLR), residual, and principal component analyses. Across most regions, growing season NDVI (G-NDVI) exhibited heightened sensitivity to climatic variables from earlier periods or from both earlier and current periods, signaling extensive temporal climatic effects. Constructing new time series for temperature, precipitation, and solar radiation from 2000 to 2019, based on the optimal vegetation response timing to each climatic variable, revealed significant correlations with G-NDVI across 27.9%, 26.7%, and 23.3% of the study area, respectively. Climate variability and anthropogenic activities contributed 45% and 55% to the G-NDVI increase in China, respectively. Afforestation significantly promoted vegetation greening, while agricultural development had a marginally positive influence. In contrast, urbanization negatively impacted vegetation, particularly in eastern China, where farmland conversion to constructed land has been prevalent over the past two decades. Neglecting temporal effects would significantly reduce the areas with robust MLR models linking G-NDVI to climatic variables, thereby increasing uncertainty in attributing vegetation changes. The findings highlight the necessity of integrating multiple anthropogenic factors and climatic temporal effects in evaluating vegetation dynamics and ecological restoration.

16.
Int J Biometeorol ; 68(8): 1533-1544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38630139

RESUMEN

Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.


Asunto(s)
Sequías , Picea , Pinus sylvestris , Tallos de la Planta , Tallos de la Planta/crecimiento & desarrollo , Picea/crecimiento & desarrollo , Pinus sylvestris/crecimiento & desarrollo , Biomasa , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
17.
Plant Dis ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907521

RESUMEN

The primary controls for charcoal rot in soybean, caused by the fungal pathogen Macrophomina phaseolina, are to avoid drought stress and to plant a moderately resistant cultivar. The effects of irrigation and cultivar were determined in 2011 and 2013 at the Lon Mann Cotton Research Station, Marianna, AR. Four soybean cultivars (Hutcheson, Osage, Ozark, and R01581F), were planted in plots with or without added M. phaseolina inoculum and subjected to three furrow irrigation regimes: full season irrigation (Full), irrigation terminated at R5 (CutR5), and non-irrigated (NonIrr). Normalized difference vegetative index (NDVI) was measured at R3 and R6. At harvest, plants and yields were collected. Roots and stems were split and the extent of visible colonization by M. phaseolina microsclerotia was assessed in the roots with a 1-5 scale (RSS) and the percent plant height stem discoloration (PHSD) measured. Precipitation in September and October was 54 and 65% below the 30-year average in 2011 and 2013, respectively. The CutR5 irrigation treatment resulted in one less irrigation than Full each year, but CutR5 NDVI's at R6 and yields were significantly lower than those with Full and not significantly different than those of NonIrr. The CutR5 RSS ratings were greater than either Full or NonIrr. Plant colonization by M. phaseolina was negatively correlated to yield in 2011 but not in 2013. No premature plant death caused by charcoal rot was observed in either year. These results indicated that late season drought stress may be more important to charcoal rot development than drought stress throughout the season, but other factors are needed to trigger early plant death and subsequent yield losses observed in grower fields.

18.
Sensors (Basel) ; 24(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275653

RESUMEN

In the fields of agriculture and forestry, the Normalized Difference Vegetation Index (NDVI) is a critical indicator for assessing the physiological state of plants. Traditional imaging sensors can only collect two-dimensional vegetation distribution data, while dual-wavelength LiDAR technology offers the capability to capture vertical distribution information, which is essential for forest structure recovery and precision agriculture management. However, existing LiDAR systems face challenges in detecting echoes at two wavelengths, typically relying on multiple detectors or array sensors, leading to high costs, bulky systems, and slow detection rates. This study introduces a time-stretched method to separate two laser wavelengths in the time dimension, enabling a more cost-effective and efficient dual-spectral (600 nm and 800 nm) LiDAR system. Utilizing a supercontinuum laser and a single-pixel detector, the system incorporates specifically designed time-stretched transmission optics, enhancing the efficiency of NDVI data collection. We validated the ranging performance of the system, achieving an accuracy of approximately 3 mm by collecting data with a high sampling rate oscilloscope. Furthermore, by detecting branches, soil, and leaves in various health conditions, we evaluated the system's performance. The dual-wavelength LiDAR can detect variations in NDVI due to differences in chlorophyll concentration and water content. Additionally, we used the radar equation to analyze the actual scene, clarifying the impact of the incidence angle on reflectance and NDVI. Scanning the Red Sumach, we obtained its NDVI distribution, demonstrating its physical characteristics. In conclusion, the proposed dual-wavelength LiDAR based on the time-stretched method has proven effective in agricultural and forestry applications, offering a new technological approach for future precision agriculture and forest management.

19.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544155

RESUMEN

As satellite launching increases worldwide, uncertainty quantification for satellite data becomes essential. Misunderstanding satellite data uncertainties can lead to misinterpretations of natural phenomena, emphasizing the importance of validation. In this study, we established a tower-based network equipped with multispectral sensors, SD-500 and SD-600, to validate the satellite-derived NDVI product. Multispectral sensors were installed at eight long-term ecological monitoring sites managed by NIFoS. High correlations were observed between both multispectral sensors and a hyperspectral sensor, with correlations of 0.76 and 0.92, respectively, indicating that the calibration between SD-500 and SD-600 was unnecessary. High correlations, 0.8 to 0.96, between the tower-based NDVI with Sentinel-2 NDVI, were observed at most sites, while lower correlations at Anmyeon-do, Jeju, and Wando highlighting challenges in evergreen forests, likely due to shadows in complex canopy structures. In future research, we aim to analyze the uncertainties of surface reflectance in evergreen forests and develop a biome-specific validation protocol starting from site selection. Especially, the integration of tower, drone, and satellite data is expected to provide insights into the effect of complex forest structures on different spatial scales. This study could offer insights for CAS500-4 and other satellite validations, thereby enhancing our understanding of diverse ecological conditions.

20.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732991

RESUMEN

This paper presents findings from a spaceborne Earth observation experiment utilizing a novel, ultra-compact hyperspectral imaging camera aboard a 3U CubeSat. Leveraging the Offner optical scheme, the camera's hyperspectrometer captures hyperspectral images of terrestrial regions with a 200 m spatial resolution and 12 nanometer spectral resolution across a 400 to 1000 nanometer wavelength range, covering 150 channels in the visible and near-infrared spectrums. The hyperspectrometer is specifically designed for deployment on a 3U CubeSat nanosatellite platform, featuring a robust all-metal cylindrical body of the hyperspectrometer, and a coaxial arrangement of the optical elements ensures optimal compactness and vibration stability. The performance of the imaging hyperspectrometer was rigorously evaluated through numerical simulations prior to construction. Analysis of hyperspectral data acquired over a year-long orbital operation demonstrates the 3U CubeSat's ability to produce various vegetation indices, including the normalized difference vegetation index (NDVI). A comparative study with the European Space Agency's Sentinel-2 L2A data shows a strong agreement at critical points, confirming the 3U CubeSat's suitability for hyperspectral imaging in the visible and near-infrared spectrums. Notably, the ISOI 3U CubeSat can generate unique index images beyond the reach of Sentinel-2 L2A, underscoring its potential for advancing remote sensing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA