RESUMEN
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale.
Asunto(s)
Neoplasias/patología , Bases de Datos Genéticas , Genómica , Humanos , Estimación de Kaplan-Meier , Neoplasias/genética , Neoplasias/mortalidad , Modelos de Riesgos ProporcionalesRESUMEN
Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.
Asunto(s)
Neoplasias , Humanos , Masculino , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Inmunoterapia , Biomarcadores de Tumor/genética , Células Germinativas/patologíaRESUMEN
Brachytherapy is a specific form of radiotherapy consisting of the precise placement of radioactive sources directly into or next to the tumor. This technique is indicated for patients affected by various types of cancers. It is an optimal tool for delivering very high doses to the tumor focally while minimizing the probability of normal tissue complications. Physicians from a wide range of specialties may be involved in either the referral to or the placement of brachytherapy. Many patients require brachytherapy as either primary treatment or as part of their oncologic care. On the basis of high-level evidence from randomized controlled trials, brachytherapy is mainly indicated: 1) as standard in combination with chemoradiation in patients with locally advanced cervical cancer; 2) in surgically treated patients with uterine endometrial cancer for decreasing the risk of vaginal vault recurrence; 3) in patients with high-risk prostate cancer to perform dose escalation and improve progression-free survival; and 4) in patients with breast cancer as adjuvant, accelerated partial breast irradiation or to boost the tumor bed. In this review, the authors discuss the clinical relevance of brachytherapy with a focus on indications, levels of evidence, and results in the overall context of radiation use for patients with cancer.
Asunto(s)
Braquiterapia/métodos , Quimioradioterapia/métodos , Medicina Basada en la Evidencia/métodos , Terapia Neoadyuvante/métodos , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Progresión de la Enfermedad , Fraccionamiento de la Dosis de Radiación , Educación Médica Continua , Humanos , Neoplasias/complicaciones , Neoplasias/mortalidad , Selección de Paciente , Médicos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Human papillomavirus (HPV) drives cervical cancer (CaCx) pathogenesis and viral oncoproteins jeopardize global gene expression in such cancers. In this study, our aim was to identify differentially expressed coding (DEcGs) and long noncoding RNA genes (DElncGs) specifically sense intronic and Natural Antisense Transcripts as they are located in the genic regions and may have a direct influence on the expression pattern of their neighbouring coding genes. We compared HPV16-positive CaCx patients (N = 44) with HPV-negative normal individuals (N = 34) by employing strand-specific RNA-seq and determined the relationships between DEcGs and DElncGs and their clinical implications. By performing Gene set enrichment and protein-protein interaction (PPI) analyses of DEcGs, we identified enrichment of processes crucial for abortive virus life cycle and cancer progression. The DEcGs formed 16 gene clusters which we identified through Molecular Complex Detection (MCODE) plugin of Cytoscape. All the gene clusters portrayed cancer-related functions. We recorded significantly correlated expression levels of 79 DElncGs with DEcGs at proximal genomic loci based on Pearson's Correlation coefficients. Of these gene pairs, 24 pairs portrayed significantly altered correlation coefficients among patients, compared to normal individuals. Of these, 6 DEcGs of 6 such gene pairs, belonged to 5 of the identified gene clusters, one of which was survival-associated. Out of the 24 correlated DEcG: DElncG pairs, we identified 3 pairs, where expression of both members was significantly associated with patient overall survival. The findings justify the cooperative roles of these gene pairs, in patient prognostication, thereby bearing immense potential for translation. Thus, elucidation of correlative strengths between paired DElncGs and DEcGs in patient and normal samples, could serve as a foundation for identification of therapeutic and prognostic targets of HPV16-positive CaCx.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Papillomavirus Humano 16 , Infecciones por Papillomavirus , ARN Largo no Codificante , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/patología , Femenino , ARN Largo no Codificante/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidad , Regulación Neoplásica de la Expresión Génica/genética , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Persona de Mediana Edad , Familia de Multigenes/genética , Adulto , Relevancia ClínicaRESUMEN
γδ T cells are becoming increasingly popular because of their attractive potential for antitumor immunotherapy. However, the role and assessment of γδ T cells in head and neck squamous cell carcinoma (HNSCC) are not well understood. We aimed to explore the prognostic value of γδ T cell and predict its abundance using a radiomics model. Computer tomography images with corresponding gene expression data and clinicopathological data were obtained from online databases. After outlining the volumes of interest manually, the radiomic features were screened using maximum melevance minimum redundancy and recursive feature elimination algorithms. A radiomics model was developed to predict γδ T-cell abundance using gradient boosting machine. Kaplan-Meier survival curves and univariate and multivariate Cox regression analyses were used for the survival analysis. In this study, we confirmed that γδ T-cell abundance was an independent predictor of favorable overall survival (OS) in patients with HNSCC. Moreover, a radiomics model was built to predict the γδ T-cell abundance level (the areas under the operating characteristic curves of 0.847 and 0.798 in the training and validation sets, respectively). The calibration and decision curves analysis demonstrated the fitness of the model. The high radiomic score was an independent protective factor for OS. Our results indicated that γδ T-cell abundance was a promising prognostic predictor in HNSCC, and the radiomics model could discriminate its abundance levels and predict OS. The noninvasive radiomics model provided a potentially powerful prediction tool to aid clinical judgment and antitumor immunotherapy.
Asunto(s)
Neoplasias de Cabeza y Cuello , Radiómica , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Algoritmos , Calibración , Neoplasias de Cabeza y Cuello/diagnóstico por imagenRESUMEN
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Asunto(s)
Proteínas de Homeodominio , Enfermedad de Parkinson , Humanos , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neuronas/metabolismo , Regulación de la Expresión Génica , Genes Homeobox , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patologíaRESUMEN
Clear cell ovarian carcinoma (CCOC) is a relatively rare subtype of ovarian cancer (OC) with high degree of resistance to standard chemotherapy. Little is known about the underlying molecular mechanisms, and it remains a challenge to predict its prognosis after chemotherapy. Here, we first analyzed the proteome of 35 formalin-fixed paraffin-embedded (FFPE) CCOC tissue specimens from a cohort of 32 patients with CCOC (H1 cohort) and characterized 8697 proteins using data-independent acquisition mass spectrometry (DIA-MS). We then performed proteomic analysis of 28 fresh frozen (FF) CCOC tissue specimens from an independent cohort of 24 patients with CCOC (H2 cohort), leading to the identification of 9409 proteins with DIA-MS. After bioinformatics analysis, we narrowed our focus to 15 proteins significantly correlated with the recurrence free survival (RFS) in both cohorts. These proteins are mainly involved in DNA damage response, extracellular matrix (ECM), and mitochondrial metabolism. Parallel reaction monitoring (PRM)-MS was adopted to validate the prognostic potential of the 15 proteins in the H1 cohort and an independent confirmation cohort (H3 cohort). Interferon-inducible transmembrane protein 1 (IFITM1) was observed as a robust prognostic marker for CCOC in both PRM data and immunohistochemistry (IHC) data. Taken together, this study presents a CCOC proteomic data resource and a single promising protein, IFITM1, which could potentially predict the recurrence and survival of CCOC.
Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Pronóstico , Proteómica/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Proteoma/análisis , Biomarcadores , Biomarcadores de TumorRESUMEN
BACKGROUND: Overall Survival (OS) and Progression-Free Interval (PFI) as survival times have been collected in The Cancer Genome Atlas (TCGA). It is of biomedical interest to consider their dependence in pathway detection and survival prediction. We intend to develop novel methods for integrating PFI as condition based on parametric survival models for identifying pathways associated with OS and predicting OS. RESULTS: Based on the framework of conditional probability, we developed a family of frailty-based parametric-models for this purpose, with exponential or Weibull distribution as baseline. We also considered two classes of existing methods with PFI as a covariate. We evaluated the performance of three approaches by analyzing RNA-seq expression data from TCGA for lung squamous cell carcinoma and lung adenocarcinoma (LUNG), brain lower grade glioma and glioblastoma multiforme (GBMLGG), as well as skin cutaneous melanoma (SKCM). Our focus was on fourteen general cancer-related pathways. The 10-fold cross-validation was employed for the evaluation of predictive accuracy. For LUNG, p53 signaling and cell cycle pathways were detected by all approaches. Furthermore, three approaches with the consideration of PFI demonstrated significantly better predictive performance compared to the approaches without the consideration of PFI. For GBMLGG, ten pathways (e.g., Wnt signaling, JAK-STAT signaling, ECM-receptor interaction, etc.) were detected by all approaches. Furthermore, three approaches with the consideration of PFI demonstrated better predictive performance compared to the approaches without the consideration of PFI. For SKCM, p53 signaling pathway was detected only by our Weibull-baseline-based model. And three approaches with the consideration of PFI demonstrated significantly better predictive performance compared to the approaches without the consideration of PFI. CONCLUSIONS: Based on our study, it is necessary to incorporate PFI into the survival analysis of OS. Furthermore, PFI is a survival-type time, and improved results can be achieved by our conditional-probability-based approach.
Asunto(s)
RNA-Seq , Humanos , RNA-Seq/métodos , Análisis de Supervivencia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/metabolismo , Melanoma/genética , Melanoma/mortalidad , Melanoma/metabolismoRESUMEN
Melanoma, a highly malignant tumour, presents significant challenges due to its cellular heterogeneity, yet research on this aspect in cutaneous melanoma remains limited. In this study, we utilized single-cell data from 92,521 cells to explore the tumour cell landscape. Through clustering analysis, we identified six distinct cell clusters and investigated their differentiation and metabolic heterogeneity using multi-omics approaches. Notably, cytotrace analysis and pseudotime trajectories revealed distinct stages of tumour cell differentiation, which have implications for patient survival. By leveraging markers from these clusters, we developed a tumour cell-specific machine learning model (TCM). This model not only predicts patient outcomes and responses to immunotherapy, but also distinguishes between genomically stable and unstable tumours and identifies inflamed ('hot') versus non-inflamed ('cold') tumours. Intriguingly, the TCM score showed a strong association with TOMM40, which we experimentally validated as an oncogene promoting tumour proliferation, invasion and migration. Overall, our findings introduce a novel biomarker score that aids in selecting melanoma patients for improved prognoses and targeted immunotherapy, thereby guiding clinical treatment decisions.
Asunto(s)
Aprendizaje Automático , Melanoma Cutáneo Maligno , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Melanoma/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Pronóstico , Biomarcadores de Tumor/metabolismo , Inmunoterapia , Análisis de la Célula Individual/métodos , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Análisis por ConglomeradosRESUMEN
Human papillomavirus (HPV) infection is a causative factor in the occurrence and progression of oropharyngeal squamous cell carcinoma (OPSCC). In recent years, clinical studies have found that HPV-positive OPSCC patients may present a better prognosis than HPV-negative patients, yet the underlying causes are unclear. This study aimed to investigate the relevance of HPV infection and the prognosis of OPSCC. On this basis, we aimed to establish a prediction model to accurately predict the prognosis and guide clinical practice. We analysed the records of 233 patients with OPSCC. Cox regression was applied to identify factors associated with survival. Moreover, variables with significant discrepancies were integrated into a nomogram model to predict prognosis. The results showed that HPV was an independent prognostic factor for OS and PFS. Immunoglobulin Heavy Constant Mu (IGHM) mRNA was significantly upregulated in patients with HPV-positive OPSCC. Crucially, IGHM expression was associated with better prognosis. The receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis both confirmed that the prognostic model exhibits good performance. In summary, HPV infection were independent prognostic factors for OPSCC. IGHM may be the key contributors to the prognostic differences in HPV-associated OPSCC. This nomogram model was able to accurately predict the prognosis of patients.
Asunto(s)
Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Masculino , Femenino , Neoplasias Orofaríngeas/virología , Neoplasias Orofaríngeas/mortalidad , Neoplasias Orofaríngeas/genética , Pronóstico , Persona de Mediana Edad , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Nomogramas , Curva ROC , Papillomaviridae/genética , Anciano , Carcinoma de Células Escamosas/virología , Carcinoma de Células Escamosas/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Virus del Papiloma HumanoRESUMEN
Lung adenocarcinoma (LUAD) is a tumour characterized by high tumour heterogeneity. Although there are numerous prognostic and immunotherapeutic options available for LUAD, there is a dearth of precise, individualized treatment plans. We integrated mRNA, lncRNA, microRNA, methylation and mutation data from the TCGA database for LUAD. Utilizing ten clustering algorithms, we identified stable multi-omics consensus clusters (MOCs). These data were then amalgamated with ten machine learning approaches to develop a robust model capable of reliably identifying patient prognosis and predicting immunotherapy outcomes. Through ten clustering algorithms, two prognostically relevant MOCs were identified, with MOC2 showing more favourable outcomes. We subsequently constructed a MOCs-associated machine learning model (MOCM) based on eight MOCs-specific hub genes. Patients characterized by a lower MOCM score exhibited better overall survival and responses to immunotherapy. These findings were consistent across multiple datasets, and compared to many previously published LUAD biomarkers, our MOCM score demonstrated superior predictive performance. Notably, the low MOCM group was more inclined towards 'hot' tumours, characterized by higher levels of immune cell infiltration. Intriguingly, a significant positive correlation between GJB3 and the MOCM score (R = 0.77, p < 0.01) was discovered. Further experiments confirmed that GJB3 significantly enhances LUAD proliferation, invasion and migration, indicating its potential as a key target for LUAD treatment. Our developed MOCM score accurately predicts the prognosis of LUAD patients and identifies potential beneficiaries of immunotherapy, offering broad clinical applicability.
Asunto(s)
Adenocarcinoma del Pulmón , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Inmunoterapia , Neoplasias Pulmonares , Aprendizaje Automático , Humanos , Inmunoterapia/métodos , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidad , Perfilación de la Expresión Génica , MicroARNs/genética , MultiómicaRESUMEN
Hepatocellular carcinoma (HCC) is one of the most common primary hepatic malignancies. E2F transcription factors play an important role in the tumorigenesis and progression of HCC, mainly through the RB/E2F pathway. Prognostic models for HCC based on gene signatures have been developed rapidly in recent years; however, their discriminating ability at the single-cell level remains elusive, which could reflect the underlying mechanisms driving the sample bifurcation. In this study, we constructed and validated a predictive model based on E2F expression, successfully stratifying patients with HCC into two groups with different survival risks. Then we used a single-cell dataset to test the discriminating ability of the predictive model on infiltrating T cells, demonstrating remarkable cellular heterogeneity as well as altered cell fates. We identified distinct cell subpopulations with diverse molecular characteristics. We also found that the distribution of cell subpopulations varied considerably across onset stages among patients, providing a fundamental basis for patient-oriented precision evaluation. Moreover, single-sample gene set enrichment analysis revealed that subsets of CD8+ T cells with significantly different cell adhesion levels could be associated with different patterns of tumor cell dissemination. Therefore, our findings linked the conventional prognostic gene signature to the immune microenvironment and cellular heterogeneity at the single-cell level, thus providing deeper insights into the understanding of HCC tumorigenesis.
Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfocitos Infiltrantes de Tumor , Humanos , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Linfocitos T CD8-positivos/inmunología , Transformación Celular Neoplásica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Pronóstico , Transcriptoma , Microambiente Tumoral , Linfocitos Infiltrantes de Tumor/inmunologíaRESUMEN
KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.
Asunto(s)
Biomarcadores de Tumor , Cinesinas , Neoplasias , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Pronóstico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/patología , Neoplasias/metabolismo , Progresión de la EnfermedadRESUMEN
BACKGROUND: This study aimed to investigate the contralateral breast cancer (CBC) recurrence rate in Korean breast cancer patients according to their BRCA1/2 germline mutation status, focusing particularly on the CBC recurrence risk in BRCA1/2 negative (BRCAx) patients. METHODS: We conducted a retrospective study on 13,107 primary breast cancer patients. The patients were divided into high-risk and low-risk groups for hereditary breast cancer based on the Korean National Health Insurance Service's eligibility criteria for BRCA1/2 germline mutation testing. The high-risk group was further categorized into the BRCA mutation group, the BRCAx group, and the not tested group. We evaluated the overall survival and cumulative risk of developing CBC in these patients. RESULTS: Among 4494 high-risk patients, 973 (21.7%) underwent genetic testing for BRCA1/2 germline mutation, revealing mutations in 158 patients (16.2%). We observed significant overall survival differences across all four groups, with the high-risk, not-tested group demonstrating notably worse overall survival (p < 0.001). However, when adjusted for other prognostic factors, there was no significant differences in hazard ratio of death between the four groups. The cumulative risk of CBC also varied among the groups. Patients with BRCA1/2 mutations showed a 7.3-fold increased risk of CBC compared to the low-risk group (95% CI 4.11-13.0, p < 0.001). Interestingly, BRCAx patients also demonstrated a significantly higher risk of CBC (HR 2.77, 95% CI 1.76-4.35, p < 0.001). The prognostic importance of the BRCAx for CBC recurrence persisted after adjusting for the age and subtype, but became insignificant when the family history of breast cancer was adjusted. CONCLUSION: Breast cancer patients who are at high risk of hereditary breast cancer but with wild-type BRCA 1/2 genes (BRCAx) have increased risk of developing contralateral breast cancer when compared to the low-risk patients. More careful surveillance and follow-up can be offered to these patients especially when they have family history of breast cancer.
Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Humanos , Femenino , Proteína BRCA1/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Estudios Retrospectivos , Proteína BRCA2/genética , República de Corea/epidemiologíaRESUMEN
The overall survival (OS) improvement after the advent of several novel systemic therapies, designed for treatment of metastatic urothelial carcinoma of the urinary bladder (mUCUB), is not conclusively studied in either contemporary UCUB patients and/or non-UCUB patients. Within the Surveillance, Epidemiology, and End Results database, contemporary (2017-2020) and historical (2000-2016) systemic therapy-exposed metastatic UCUB and, subsequently, non-UCUB patients were identified. Separate Kaplan-Meier and multivariable Cox regression (CRM) analyses first addressed OS in mUCUB and, subsequently, in metastatic non-UCUB (mn-UCUB). Of 3443 systemic therapy-exposed patients, 2725 (79%) harbored mUCUB versus 709 (21%) harbored mn-UCUB. Of 2725 mUCUB patients, 582 (21%) were contemporary (2017-2020) versus 2143 (79%) were historical (2000-2016). In mUCUB, median OS was 11 months in contemporary versus 8 months in historical patients (Δ = 3 months; p < .0001). After multivariable CRM, contemporary membership status (2017-2020) independently predicted lower overall mortality (OM; hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.60-0.76; p < .001). Of 709 mn-UCUB patients, 167 (24%) were contemporary (2017-2020) and 542 (76%) were historical (2000-2016). In mn-UCUB, median OS was 8 months in contemporary versus 7 months in historical patients (Δ = 1 month; p = .034). After multivariable CRM, contemporary membership status (2017-2020) was associated with HR of 0.81 (95% CI = 0.66-1.01; p = .06). In conclusion, contemporary systemic therapy-exposed metastatic patients exhibited better OS in UCUB. However, the magnitude of survival benefit was threefold higher in mUCUB and approximated the survival benefits recorded in prospective randomized trials of novel systemic therapies.
RESUMEN
Some patients with marginal zone lymphoma (MZL) experience histological transformation to diffuse large B-cell lymphoma (DLBCL). Because of the paucity of long-term data on transformation, we conducted a population-based study to estimate the risk of transformation and its impact on survival in MZL. Using the Surveillance, Epidemiology and End Results database, we identified 23 221 patients with histology-proven MZL between 2000 and 2018. Competing risk method, Kaplan-Meier and Cox proportional hazards regression were performed to analyze time-to-event outcomes. Based on 420 events of transformation, the 10-year cumulative incidence rate of transformation is 2.23% (95% CI: 2.00%-2.46%) in MZL, 1.5% (95% CI: 1.3%-1.8%), 2.7% (95% CI: 2.3%-3.2%) and 5.8% (95% CI: 4.6%-7.1%) in extranodal, nodal and splenic MZL (EMZL, NMZL and SMZL), respectively. Patients with SMZL (subdistribution hazard ratio [SHR], 2.96; 95% CI: 2.21-3.96) or NMZL (SHR, 1.49; 95% CI: 1.17-1.90) have a higher risk of transformation than those with EMZL. For each MZL subtype, patients with transformation had a significantly shorter overall survival. Patients with transformation >18 months since MZL diagnosis had longer OS than those who presented within 18 months (5-year rate, 87.4% [95% CI: 83.7%-91.2%] vs 47.9% [95% CI: 38.8%-59.0%]; P < .001). Compared to patients with matched de novo DLBCL, those whose DLBCL was transformed from MZL had a shorter OS (5-year rate, 56.6% [95% CI: 51.9%-61.8%] vs 46.1% [95% CI: 40.9%-51.9%]; P < .001). We concluded that patients with SMZL had the highest risk of transformation. Regardless of MZL subtype, transformation resulted in significantly increased mortality.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B de la Zona Marginal , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B de la Zona Marginal/epidemiología , Linfoma de Células B de la Zona Marginal/diagnóstico , Linfoma de Células B Grandes Difuso/patologíaRESUMEN
Serum hepatitis B core-related antigen (HBcrAg) is considered a surrogate marker of the amount and activity of intrahepatic covalently closed circular DNA. This study aimed to explore the prognostic value of HBcrAg on patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after curative hepatectomy undergoing antiviral therapy (AVT). Data of 949 consecutive patients with HBV-related HCC undergoing curative resection between 2010 and 2013 were reviewed. Serum HBcrAg levels were measured at surgery (baseline) for all patients and at the time of 2 years postoperatively (on-treatment) for those without recurrence. Primary endpoint was tumor recurrence. High HBcrAg levels are associated with malignant phenotypes. HBcrAg independently affected both recurrence and overall survival (OS) in patients with negative hepatitis B e antigen (HBeAg-, p = .007 and p = .042, respectively) but not in their positive HBeAg (HBeAg+) counterparts (p = .100 and p = .075, respectively). Patients with high baseline HBcrAg had higher late, but not early recurrence rates than those with low baseline HBcrAg levels, regardless of HBeAg status (HBeAg+: p = .307 for early, p = .001 for late; HBeAg-: p = .937 for early, p < .001 for late). On-treatment HBcrAg independently affected late recurrence in patients stratified by both cirrhosis and HBeAg (p < .001 for all). The predictive power of HBcrAg kinetics for late recurrence was better than that of the baseline and on-treatment HBcrAg. High HBcrAg levels during long-term AVT are associated with late recurrence of HCC after hepatectomy. Combining baseline and on-treatment HBcrAg might be valuable in identifying patients at a high risk of relapse and stratifying surveillance strategies postoperatively.
RESUMEN
Ferroptosis, a form of regulated cell death, is characterized by iron-dependent lipid peroxidation. It is recognized increasingly for its pivotal role in both cancer development and the response to cancer treatments. We assessed associations between 370,027 single-nucleotide polymorphisms (SNPs) within 467 ferroptosis-related genes and survival of non-small cell lung cancer (NSCLC) patients. Data from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial served as our discovery dataset, while the Harvard Lung Cancer Susceptibility Study used as our validation dataset. For SNPs that remained statistically significantly associated with overall survival (OS) in both datasets, we employed a multivariable stepwise Cox proportional hazards regression model with the PLCO dataset. Ultimately, two independent SNPs, PARK7 rs225120 C>T and DDR2 rs881127 T>C, were identified with adjusted hazard ratios of 1.32 (95% confidence interval = 1.15-1.52, p = .0001) and 1.34 (95% confidence interval = 1.09-1.64, p = .006) for OS, respectively. We aggregated these two SNPs into a genetic score reflecting the number of unfavorable genotypes (NUG) in further multivariable analysis, revealing a noteworthy association between increased NUG and diminished OS (ptrend = .001). Additionally, an expression quantitative trait loci analysis indicated that PARK7 rs225120T genotypes were significantly associated with higher PARK7 mRNA expression levels in both whole blood and normal lung tissue. Conversely, DDR2 rs881127C genotypes were significantly associated with lower DDR2 mRNA expression levels in normal lung tissue. Our findings suggest that genetic variants in the ferroptosis-related genes PARK7 and DDR2 are associated with NSCLC survival, potentially through their influence on gene expression levels.
RESUMEN
Given that esophageal cancer is highly malignant, the discovery of novel prognostic markers is eagerly awaited. We performed serological identification of antigens by recombinant cDNA expression cloning (SEREX) and identified SKI proto-oncogene protein and transmembrane p24 trafficking protein 5 (TMED5) as antigens recognized by serum IgG antibodies in patients with esophageal carcinoma. SKI and TMED5 proteins were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens. The serum anti-SKI antibody (s-SKI-Ab) and anti-TMED5 antibody (s-TMED5-Ab) levels were significantly higher in 192 patients with esophageal carcinoma than in 96 healthy donors. The presence of s-SKI-Abs and s-TMED5-Abs in the patients' sera was confirmed by western blotting. Immunohistochemical staining showed that the TMED5 protein was highly expressed in the cytoplasm and nuclear compartments of the esophageal squamous cell carcinoma tissues, whereas the SKI protein was localized predominantly in the nuclei. Regarding the overall survival in 91 patients who underwent radical surgery, the s-SKI-Ab-positive and s-TMED5-Ab-negative statuses were significantly associated with a favorable prognosis. Additionally, the combination of s-SKI-Ab-positive and s-TMED5-Ab-negative cases showed an even clearer difference in overall survival as compared with that of s-SKI-Ab-negative and s-TMED5-Ab-positive cases. The s-SKI-Ab and s-TMED5-Ab biomarkers are useful for diagnosing esophageal carcinoma and distinguishing between favorable and poor prognoses.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Esofágicas , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas , Humanos , Neoplasias Esofágicas/inmunología , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Anciano , Proteínas Proto-Oncogénicas/inmunología , Proteínas de Unión al ADN/inmunología , Adulto , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/cirugía , Anciano de 80 o más Años , Proteínas de la Membrana/inmunologíaRESUMEN
The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarkers that can facilitate clinical management and treatment decisions. This study recruited 491 ESCC patients who underwent surgical treatment at Huashan Hospital, Fudan University. We incorporated 14 blood metabolic indicators and identified independent prognostic indicators for overall survival through univariate and multivariate analyses. Subsequently, a metabolism score formula was established based on the biochemical markers. We constructed a nomogram and machine learning models utilizing the metabolism score and clinically significant prognostic features, followed by an evaluation of their predictive accuracy and performance. We identified alkaline phosphatase, free fatty acids, homocysteine, lactate dehydrogenase, and triglycerides as independent prognostic indicators for ESCC. Subsequently, based on these five indicators, we established a metabolism score that serves as an independent prognostic factor in ESCC patients. By utilizing this metabolism score in conjunction with clinical features, a nomogram can precisely predict the prognosis of ESCC patients, achieving an area under the curve (AUC) of 0.89. The random forest (RF) model showed superior predictive ability (AUC = 0.90, accuracy = 86%, Matthews correlation coefficient = 0.55). Finally, we used an RF model with optimal performance to establish an online predictive tool. The metabolism score developed in this study serves as an independent prognostic indicator for ESCC patients.