Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32182973

RESUMEN

BACKGROUND: Atherosclerotic plaques are unstable, and their release may result in thrombosis; therefore, currently, antiplatelet therapy with anticoagulants is recommended for the treatment of acute coronary syndrome. The aim of this study was to assess the effect of oxidized cholesterol on human umbilical vascular endothelial cells (HUVECs). The study also examines the protective and repairing effect of dabigatran and rivaroxaban in a model of vascular endothelial damage with 25-hydroxycholesterol (25-OHC). METHODS: HUVECs were treated with compounds induce DNA single-strand breaks (SSBs) using the comet assay. Oxidative DNA damage was detected using endonuclease III (Nth) or human 8 oxoguanine DNA glycosylase (hOOG1). Reactive oxygen species (ROS) formation was determined using flow cytometry. RESULTS: 25-hydroxycholesterol caused DNA SSBs, induced oxidative damage and increased ROS in the HUVECs; ROS level was lowered by dabigatran and rivaroxaban. Only dabigatran was able to completely repair the DNA SSBs induced by oxysterol. Dabigatran was able to reduce the level of oxidative damage of pyrimidines induced by oxysterol to the level of control cells. CONCLUSIONS: Observed changes strongly suggest that the tested anticoagulants induced indirect repair of DNA by inhibiting ROS production. Furthermore, dabigatran appears to have a higher antioxidant activity than rivaroxaban.


Asunto(s)
Anticoagulantes/farmacología , Antioxidantes/farmacología , Daño del ADN , Dabigatrán/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Rivaroxabán/farmacología , Colesterol/análogos & derivados , Colesterol/toxicidad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Estrés Oxidativo
2.
Front Immunol ; 15: 1402024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873598

RESUMEN

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen capable of adapting and surviving within macrophages, utilizing host nutrients for its growth and replication. Cholesterol is the main carbon source during the infection process of Mtb. Cholesterol metabolism in macrophages is tightly associated with cell functions such as phagocytosis of pathogens, antigen presentation, inflammatory responses, and tissue repair. Research has shown that Mtb infection increases the uptake of low-density lipoprotein (LDL) and cholesterol by macrophages, and enhances de novo cholesterol synthesis in macrophages. Excessive cholesterol is converted into cholesterol esters, while the degradation of cholesterol esters in macrophages is inhibited by Mtb. Furthermore, Mtb infection suppresses the expression of ATP-binding cassette (ABC) transporters in macrophages, impeding cholesterol efflux. These alterations result in the massive accumulation of cholesterol in macrophages, promoting the formation of lipid droplets and foam cells, which ultimately facilitates the persistent survival of Mtb and the progression of tuberculosis (TB), including granuloma formation, tissue cavitation, and systemic dissemination. Mtb infection may also promote the conversion of cholesterol into oxidized cholesterol within macrophages, with the oxidized cholesterol exhibiting anti-Mtb activity. Recent drug development has discovered that reducing cholesterol levels in macrophages can inhibit the invasion of Mtb into macrophages and increase the permeability of anti-tuberculosis drugs. The development of drugs targeting cholesterol metabolic pathways in macrophages, as well as the modification of existing drugs, holds promise for the development of more efficient anti-tuberculosis medications.


Asunto(s)
Colesterol , Macrófagos , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/inmunología , Colesterol/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología , Animales , Interacciones Huésped-Patógeno/inmunología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Metabolismo de los Lípidos
3.
Biomed Pharmacother ; 170: 116065, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154272

RESUMEN

BACKGROUND: Diabetes patients often suffer chronic vascular complications resulting from endothelial dysfunction, smooth muscle cell (SMC) proliferation, inflammation and disturbed oxidative balance. Empagliflozin is one of three approved sodium-glucose cotransporter 2 (SGLT2) inhibitors for type 2 diabetes mellitus. THE AIM OF THIS STUDY: was to determine the protective and repairing effect of EMPA in a model of vascular endothelial and SMC damage with 25-hydroxycholesterol (25-OHC). METHODS: Human umbilical vascular endothelial cells (HUVECs) and SMCs were treated with compounds which induce DNA single-strand breaks (SSBs) and subjected to comet assay. Oxidative DNA damage was detected using endonuclease III (Nth) or human 8 oxoguanine DNA glycosylase (hOOG1). Reactive oxygen species (ROS) formation was determined by the fluorescence of a 6-carboxy-2',7'-dichlorodihydrofluoresce probe in diacetate (H2DCFDA). RESULTS: 25-OHC-stimulated SMCs showed greater resistance to ROS generation and DNA damage compared to HUVECs. In both experimental models, EMPA treatment was associated with lower ROS production and DNA damage, including oxidative damage to purines and pyrimidines. This effect was not dose-dependent. EMPA was found to counteract this DNA damage by inhibiting ROS production. CONCLUSIONS: It appears that the EMPA induced indirect repair of DNA by inhibiting ROS production.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Endoteliales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Daño del ADN , Estrés Oxidativo , Colesterol , ADN/metabolismo
4.
J Hazard Mater ; 459: 132057, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467611

RESUMEN

Both cholesterol and oxidized cholesterol (OXC) are present in human diets. The incidence of inflammatory bowel diseases (IBDs) is increasing in the world. The present study was to investigate the mechanism by which OXC promotes colitis using C57BL/6 mice as a model. Results shown that more severe colitis was developed in OXC-treated mice with the administration of dextran sulfate sodium (DSS) in water. Direct effects of short-term OXC exposure on gut barrier or inflammation were not observed in healthy mice. However, OXC exposure could cause gut microbiota dysbiosis with a decrease in the relative abundance of short-train fatty acids (SCFAs)-producing bacteria (Lachnospiraceae_NK4A136_group and Blautia) and an increase in the abundance of some potential harmful bacteria (Bacteroides). OXC-induced symptoms of colitis were eliminated when mice were administered with antibiotic cocktails, indicating the promoting effect of OXC on DSS-induced colitis was mediated by its effect on gut microbiota. Moreover, bacteria-depleted mice colonized with gut microbiome from OXC-DSS-exposed mice exhibited a severe colitis, further proving the gut dysbiosis caused by OXC exposure was the culprit in exacerbating the colitis. It was concluded that dietary OXC exposure increased the susceptibility of colitis in mice by causing gut microbiota dysbiosis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Disbiosis/inducido químicamente , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/microbiología , Bacterias , Colesterol/toxicidad , Colon , Sulfato de Dextran/toxicidad
5.
J Agric Food Chem ; 70(41): 13289-13301, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198042

RESUMEN

Western diet with a higher intake of fat and cholesterol has been claimed as an intestinal inflammation trigger. Human diet contains both cholesterol and oxidized cholesterol. Oxidized cholesterol has been claimed to be associated with various inflammation diseases, but its effects on colitis and gut microbiome remain largely unknown. The present study was the first time to investigate the effect of the oxidized cholesterol on gut microbiota and dextran sodium sulfate-induced colitis using mice as a model. The results showed that oxidized cholesterol promoted colitis by exacerbating bleeding, body weight decrease, colon shortening, gut barrier damage, oxidative stress, and gut inflammation, whereas non-oxidized cholesterol had no effect. Meanwhile, oxidized cholesterol could adversely modulate the gut microbiota by increasing the relative abundance of pro-inflammatory bacteria (including Escherichia-Shigella and Bacteroides) and decreasing that of beneficial bacteria (Lachnospiraceae_NK4A136_group and Odoribacter). In addition, oxidized cholesterol significantly reduced the production of fecal short-chain fatty acids in colitis mice. It was concluded that oxidized cholesterol was a potential dietary factor of gut dysbiosis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Ratones , Humanos , Animales , Sulfato de Dextran/efectos adversos , Colesterol en la Dieta , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/microbiología , Colon/microbiología , Ácidos Grasos Volátiles/farmacología , Inflamación , Modelos Animales de Enfermedad
6.
Biomed Pharmacother ; 147: 112679, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35121342

RESUMEN

Recent data showed that dabigatran can reduce not only procoagulatory effects but also block proinflammatory stimuli by inhibiting the expression of cytokines and chemokines and reducing thrombin-induced endothelial permeability. The aim of our study was to assess the effect of dabigatran on the integrity and inflammatory properties of endothelial cells stimulated by 25-hydroxycholesterol (25-OHC, oxysterol). HUVECs (Human Umbilical Vein Endothelial Cells) were stimulated with 25-hydroxycholesterol 10 µg/ml, dabigatran 100 ng/ml or 500 ng/ml and 25-hydroxycholesterol + dabigatran (100 ng/ml, 500 ng/ml). HUVEC integrity and permeability was measured in the RTCA-DP xCELLigence system and by the paracellular flux system. The mRNA expression of ICAM-1, VEGF, IL-33, MCP-1 and TNF-α was analyzed by Real-time PCR. Cell apoptosis and viability was measured by flow cytometry. VEGF protein concentration was assessed in supernatants by ELISA. VE-cadherin expression in endothelial cells was evaluated by confocal microscopy. Pre-stimulation of HUVECs with 25-OHC decreased endothelial cell integrity (p < 0.001) and increased the expression of IL-33, ICAM-1, MCP-1, VEGF, TNF-α mRNA (p < 0.01) compared to unstimulated controls. Following stimulation of HUVECs with dabigatran 100 ng/ml or 500 ng/ml restored HUVEC integrity interrupted by 25-OHC (p < 0.001). In HUVECs pre-stimulated with oxysterol, dabigatran stimulation decreased mRNA expression of the proinflammatory cytokines IL-33 and TNF-α, chemokines MCP-1 ICAM-1 and VEGF (p < 0.01). Dabigatran 500 mg/ml+ 25-OHC increased the endothelial expression of VE-cadherin as compared to 25-OHC (p < 0.01). Our findings suggest that dabigatran stabilizes the endothelial barrier and inhibits the inflammation caused by oxysterol.


Asunto(s)
Quimiocinas/efectos de los fármacos , Citocinas/efectos de los fármacos , Dabigatrán/farmacología , Células Endoteliales/efectos de los fármacos , Oxiesteroles/farmacología , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mediadores de Inflamación/metabolismo , ARN Mensajero
7.
Cells ; 11(2)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35053318

RESUMEN

Oxidized cholesterols, the so-called oxysterols, are widely known to regulate cholesterol homeostasis. However, more recently oxysterols have emerged as important lipid mediators in the response to both bacterial and viral infections. This review summarizes our current knowledge of selected oxysterols and their receptors in the control of intracellular bacterial growth as well as viral entry into the host cell and viral replication. Lastly, we briefly discuss the potential of oxysterols and their receptors as drug targets for infectious and inflammatory diseases.


Asunto(s)
Infecciones Bacterianas/inmunología , Oxiesteroles/inmunología , Virosis/inmunología , Animales , Humanos
8.
J Cardiovasc Thorac Res ; 12(1): 43-50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211137

RESUMEN

Introduction: The present study examined the effects of high cholesterol and high oxidized-cholesterol diets on the myocardial expression of TLR4 and pro-inflammatory cytokine in rats. Methods: Male Wistar rats were allocated into 6 groups and fed with a normal diet, cholesterol, and oxidized-cholesterol rich diets with or without isoproterenol-induced myocardial infarction. TLR4 and MyD 88 expression and levels tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were measured in the heart and serum. Results: Oxidized cholesterol-fed animals had higher serum levels of oxidized low-density lipoprotein (LDL) (263 ± 13 ng/dL) than the cholesterol-fed animals (98 ± 8 ng/dL; P < 0.001). A high level of oxidized-LDL caused fibrotic cell formation and enhanced neutrophil infiltration in the absence of MI. Both cholesterol and oxidized-cholesterol upregulated TLR4 mRNA expression and increased TNF-α and IL-6 production in the hearts of rats with MI. In rats fed with oxidized-cholesterol the serum and myocardial levels of TNF-α (653 ± 42 pg/mL, 1375 ± 121 pg/100 mg, respectively) were higher than MI group (358±24 pg/mL, P < 0.001 and 885 ± 56 pg/100 mg, P < 0.01). A significant correlation was seen between TLR4 expression and infarct size. Conclusion: These findings suggest that cardiac TLR4 is preferentially upregulated by oxidized cholesterol in rats. Oxidized cholesterol may have a critical role in cardiac toxicity in the absence of pathological conditions.

9.
Antioxidants (Basel) ; 8(8)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366068

RESUMEN

(1) Background: Oxidative stress, chronic inflammation, vasoocclusion, and free iron are all features present in sickle cell disease. Paraoxonases (PON) are a family (PON-1, PON-2, PON-3) of antioxidant enzymes with anti-inflammatory action. Here, for the first time, we described PON-1 activities and PON-1, PON-2, PON-3 polymorphisms in patients with sickle cell disease, homozygous for HbSS, compared with healthy controls. (2) Methods: The groups were matched for age and gender. PON-1 activities (arylesterase and paraoxonase) were determined by enzymatic hydrolysis of phenylcetate and paraoxon, respectively. Polymorphisms were determined by Restriction Fragment Length Polymorphism- Polymerase Chain Reaction (RFLP-PCR). (3) Results: Plasma cholesterol and fractions, ApoA1 and ApoB levels were all decreased in sickle cell disease patients, while anti-oxidized low-density lipoprotein (LDL) antibodies and C-reactive protein were increased. Serum arylesterase activity was lower in sickle cell disease patients when compared with healthy controls. In patients, paraoxonase activity was higher in those with PON-1 RR Q192R polymorphism. In these patients, the increase of serum iron and ferritin levels and transferrin saturation were less pronounced than those observed in patients with QQ or QR polymorphism. No differences were observed with PON-1 L55M, and PON-2 and PON-3 polymorphisms. Multivariate regression analysis showed that transferrin and ferritin concentrations correlated with arylesterase and paraoxonase activities. (4) Conclusions: Both transferrin and ferritin were the main predictors of decreased arylesterase and paraoxonase activities in patients with sickle cell disease. LDL oxidation increased, and RR PON-1 Q192R polymorphism is likely to be a protective factor against oxidative damage in these patients.

10.
Clin Chim Acta ; 471: 171-176, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28601670

RESUMEN

OBJECTIVE: This study investigates the association between HbA1c, LDL and oxi-LDL in individuals without diabetes (DM). METHODS: One hundred and ninety-six individuals, without DM, were enrolled and divided into three groups according to HbA1c and fasting plasma glucose values. HbA1c, oxi-LDL, LDL, and other biochemical measurements of lipid profile were also carried out. RESULTS: oxi-LDL levels showed significant differences among all groups and group 3 presented higher values [34U/L (27-46); 44U/L (37-70); and 86U/L (49-136); p<0.001; for groups 1, 2 and 3, respectively]. There was also a significant difference in oxi-LDL/HDL and oxi-LDL/LDL ratios among all groups (p<0.001). There was no significant difference in total cholesterol (TC), triglycerides and LDL values among groups. HbA1c showed moderate positive associations with oxi-LDL (r=0.431; p<0.001), oxi-LDL/HDL ratio (r=0.423, p<0.001), and oxi-LDL/LDL ratio (r=0.359, p<0.001). There were lower associations between HbA1c and TC (r=0.142; p=0.048), triglycerides (r=0.155; p=0.030), LDL (r=0.148; p=0.039), non-HDL (r=0.192; p=0.007) and Apo B (r=0.171, p<0.001). The positive associations between HbA1c and oxi-LDL, oxi-LDL/HDL and oxi-LDL/LDL ratios remained significant even after adjustment by multiple linear regression analysis for the variables alcohol consumption, use of medicine, BMI, and age. CONCLUSIONS: oxi-LDL levels are significantly associated with HbA1c in non-diabetic individuals. However, the levels of traditional atherogenic lipids only showed a weak association with HbA1c levels. Those at high risk of developing DM or cardiovascular disease have higher levels of oxi-LDL. These data favor to the use of HbA1c as a biomarker to identify individuals at risk of developing complications even in non-diabetic glycemic levels.


Asunto(s)
Hemoglobina Glucada/análisis , Lipoproteínas LDL/sangre , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Front Aging Neurosci ; 7: 119, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26150787

RESUMEN

Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aß peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain's high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aß accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.

12.
Chem Phys Lipids ; 186: 45-50, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25582951

RESUMEN

We have previously shown that the oxidized cholesterol 3ß-hydroxy-5-oxo-5,6-secocholestan-6-al (atheronal A) reacts covalently with the free amino group of phosphatidylethanolamine (PE) or phosphatidylserine (PS) to produce a Schiff base. Accompanying this interaction, the biophysical properties of the phospholipid membranes are also changed. In the present report, we extend our earlier study of the rate of Schiff base formation in dimyristoyl PE/atheronal A binary mixtures to the more biologically relevant case in which varying amounts of cholesterol are also present. Using optical spectroscopy to monitor reaction kinetics, we demonstrate that the presence of cholesterol reduces the accessibility of the aldehyde moiety of the atheronal A to the free headgroup amine. We also find that the presence of atheronal A promotes the early onset of cholesterol crystallization in the ternary mixtures, perhaps with the Schiff base serving as a site for heterogeneous nucleation.


Asunto(s)
Colesterol/química , Fosfatidiletanolaminas/química , Bases de Schiff/química , Colestanol/análogos & derivados , Colestanol/química , Colesterol/análogos & derivados , Cristalización , Cinética , Oxidación-Reducción , Transición de Fase
13.
J Clin Biochem Nutr ; 50(1): 84-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22247606

RESUMEN

The cholesterol ozonolysis products secosterol-A and its aldolization product secosterol-B were recently detected in human atherosclerotic tissues and brain specimens, and have been postulated to play pivotal roles in the pathogenesis of atherosclerosis and neurodegenerative diseases. We examined several oxidized cholesterol metabolites including secosterol-A, secosterol-B, 25-hydroxycholesterol, 5ß,6ß-epoxycholesterol and 7-ketocholesterol for their effects on the activities of three nitric oxide synthases. In contrast to other oxidized metabolites, secosterol-A was found to be a potent inhibitor against the neuronal- and endothelial-type, but not the inducible-type nitric oxide synthase, with IC(50) values of 22 ± 1 and 50 ± 5 µM, respectively. The calmodulin-binding regions of the neuronal- and endothelial-nitric oxide synthases contain lysine residues which are not present in the inducible-type nitric oxide synthase. Secosterol-A modifies proteins through the formation of a Schiff base with the lysine epsilon-amino group. It is possible that secosterol-A modifies lysine residues of constitutive nitric oxide synthases, leading to the inhibition of enzymatic activities. As nitric oxide is a critical signaling molecule in vascular function and in long-term potentiation, its reduced production through inhibition of constitutive nitric oxide synthases by secosterol-A may contribute to the development of atherosclerosis and memory impairment in particular neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA