Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Complement Altern Med ; 18(1): 188, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914450

RESUMEN

BACKGROUND: Zyflamend, a blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5'-adenosine monophosphate-activated protein kinase (AMPK), a master energy sensor of the cell. Clinically, treatment with Zyflamend and/or metformin (activators of AMPK) had benefits in castrate-resistant prostate cancer patients who no longer responded to treatment. Two predominant upstream kinases are known to activate AMPK: liver kinase B1 (LKB1), a tumor suppressor, and calcium-calmodulin kinase kinase-2 (CaMKK2), a tumor promotor over-expressed in many cancers. The objective was to interrogate how Zyflamend activates AMPK by determining the roles of LKB1 and CaMKK2. METHODS: AMPK activation was determined in CWR22Rv1 cells treated with a variety of inhibitors of LKB1 and CaMKK2 in the presence and absence of Zyflamend, and in LKB1-null HeLa cells that constitutively express CaMKK2, following transfection with wild type LKB1 or catalytically-dead mutants. Upstream regulation by Zyflamend of LKB1 and CaMKK2 was investigated targeting protein kinase C-zeta (PKCζ) and death-associated protein kinase (DAPK), respectively. RESULTS: Zyflamend's activation of AMPK appears to be LKB1 dependent, while simultaneously inhibiting CaMKK2 activity. Zyflamend failed to rescue the activation of AMPK in the presence of pharmacological and molecular inhibitors of LKB1, an effect not observed in the presence of inhibitors of CaMKK2. Using LKB1-null and catalytically-dead LKB1-transfected HeLa cells that constitutively express CaMKK2, ionomycin (activator of CaMKK2) increased phosphorylation of AMPK, but Zyflamend only had an effect in cells transfected with wild type LKB1. Zyflamend appears to inhibit CaMKK2 by DAPK-mediated phosphorylation of CaMKK2 at Ser511, an effect prevented by a DAPK inhibitor. Alternatively, Zyflamend mediates LKB1 activation via increased phosphorylation of PKCζ, where it induced translocation of PKCζ and LKB1 to their respective active compartments in HeLa cells following treatment. Altering the catalytic activity of LKB1 did not alter this translocation. DISCUSSION: Zyflamend's activation of AMPK is mediated by LKB1, possibly via PKCζ, but independent of CaMKK2 by a mechanism that appears to involve DAPK. CONCLUSIONS: Therefore, this is the first evidence that natural products simultaneously and antithetically regulate upstream kinases, known to be involved in cancer, via the activation of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Extractos Vegetales/farmacología , Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Línea Celular Tumoral , Células HeLa , Humanos , Masculino , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
J Cell Mol Med ; 19(7): 1646-55, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25781645

RESUMEN

Light-induced retinal degeneration is characterized by photoreceptor cell death. Many studies showed that photoreceptor demise is caspase-independent. In our laboratory we showed that leucocyte elastase inhibitor/LEI-derived DNase II (LEI/L-DNase II), a caspase-independent apoptotic pathway, is responsible for photoreceptor death. In this work, we investigated the activation of a pro-survival kinase, the protein kinase C (PKC) zeta. We show that light exposure induced PKC zeta activation. PKC zeta interacts with LEI/L-DNase II and controls its DNase activity by impairing its nuclear translocation. These results highlight the role of PKC zeta in retinal physiology and show that this kinase can control caspase-independent pathways.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Luz , Proteína Quinasa C/metabolismo , Degeneración Retiniana/enzimología , Secuencia de Aminoácidos , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Células HeLa , Humanos , Masculino , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Degeneración Retiniana/patología , Serpinas/metabolismo
3.
J Biol Chem ; 288(51): 36426-36, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24196963

RESUMEN

The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.


Asunto(s)
Retroalimentación Fisiológica , FN-kappa B/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vasculitis/metabolismo , Animales , Aorta/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Fosfoproteínas/genética , Proteína Quinasa C/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Factor de Necrosis Tumoral alfa/farmacología , Vasculitis/etiología
4.
Tissue Barriers ; 11(1): 2060692, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35369830

RESUMEN

The pentapeptide L-R5 has previously been shown to transiently increase the permeability of nasal epithelial cell layers in vitro, allowing paracellular transport of molecules of up to 4 kDa. Protein kinase C zeta (PKC ζ), a member of a family of serine/threonine kinases was shown to be involved in tight junction modulation induced by L-R5. We show here that the ability of L-R5 to modulate tight junctions is comparable to other permeability enhancers such as bilobalide, latrunculin A or C10. Interaction of the peptide with the target protein occurs via electrostatic interaction, with the presence of positive charges being essential for its functionality. L-R5 is myristoylated to allow quick cell entry and onset of activity. While no epithelial cytotoxicity was detected, the hydrophobic myristoyl rest was shown to cause haemolysis. Taken together, these data show that a structural optimization of L-R5 may be possible, both from a toxicological and an efficacy point of view.


Asunto(s)
Células Epiteliales , Péptidos , Péptidos/metabolismo , Células Epiteliales/metabolismo , Uniones Estrechas/metabolismo , Relación Estructura-Actividad
5.
Front Oncol ; 13: 1051516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776326

RESUMEN

Neuroblastoma (NB) is a cancer that develops in the neuroblasts. It is the most common cancer in children under the age of 1 year, accounting for approximately 6% of all cancers. The prognosis of NB is linked to both age and degree of cell differentiation. This results in a range of survival rates for patients, with outcomes ranging from recurrence and mortality to high survival rates and tumor regression. Our previous work indicated that PKC-ι promotes cell proliferation in NB cells through the PKC-ι/Cdk7/Cdk2 cascade. We report on two atypical protein kinase inhibitors as potential therapeutic candidates against BE(2)-C and BE(2)-M17 cells: a PKC-ι-specific 5-amino-1-2,3-dihydroxy-4-(methylcyclopentyl)-1H-imidazole-4-carboxamide and a PKC-ζ specific 8-hydroxy-1,3,6-naphthalenetrisulfonic acid. Both compounds induced apoptosis and retarded the epithelial-mesenchymal transition (EMT) of NB cells. Proteins 14-3-3 and Smad2/3 acted as central regulators of aPKC-driven progression in BE(2)-C and BE(2)-M17 cells in relation to the Akt1/NF-κB and TGF-ß pathways. Data indicates that aPKCs upregulate Akt1/NF-κB and TGF-ß pathways in NB cells through an association with 14-3-3 and Smad2/3 that can be diminished by aPKC inhibitors. In summary, both inhibitors appear to be promising potential neuroblastoma therapeutics and merit further research.

6.
Biochem Biophys Rep ; 32: 101375, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36324528

RESUMEN

The myristoylated pentapeptide, L-R5, contains an amino acid sequence of the zeta inhibitory peptide (ZIP) portion (pseudosubstrate) of protein kinase C zeta (PKC ζ). As PKC ζ is involved in the modulation of epithelial tight junctions (TJs) through the phosphorylation of TJ proteins, L-R5 was suggested to interact with the enzyme resulting in the enhancement of paracellular permeability. This study shows that L-R5 does not bind to the enzyme but interacts directly with TJ proteins. We show here that the binding of PKC ζ to occludin and its successive phosphorylation is prevented by L-R5, which leads to TJ disruption and enhanced epithelial permeability. Although L-R5 did not show any in vitro cytotoxicity, a proteomics study revealed that L-R5 interferes with other regulatory pathways, e.g., apoptosis and immune response. We suggest that structural modification of the peptide may increase the specificity TJ protein-peptide interaction.

7.
Front Oncol ; 10: 209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32175276

RESUMEN

Ovarian cancer is estimated to reach 22,530 diagnoses and cause 13,980 cancer deaths per year. The most common histology diagnosed of ovarian cancer is epithelial ovarian carcinomas (EOC). An aggressive epithelial subtype is clear cell ovarian carcinoma (CCOC) and is characterized as a non-serous ovarian cancer. Protein kinase C (PKC) is an enzymatic family of proteins that have been found to be a component in cancer progression, tissue invasion, and metastasis. The atypical PKC (aPKC) isoforms, PKC-ι and PKC-ζ, have been suggested to participate in the increased proliferation of ovarian cancers. Previous studies have indicated that novel aPKC inhibitors ICA-1S and ζ-Stat decreased the migratory behaviors of colorectal cancer cells and were selective for PKC-ι/λ and PKC-ζ, respectively. The aims of this investigation were to further determine the binding mechanisms of ζ-Stat, expand on the tissue range of these compounds, investigate the therapeutic potential of ζ-Stat in CCOC, and to illustrate the disruption of invasion via the PKC-ζ signaling cascade. The methods utilized were molecular docking and virtual target screening, Western blot analysis, end-point PCR, GST pull down, cell viability and invasion and migration assays. We discovered that the small molecule inhibitor, ζ-Stat, is a prospective drug candidate to investigate as a novel potential treatment for CCOC. We also found that the PKC-ζ/Ect2/Rac1 activation pathway was decreased by ζ-Stat, which in turn decreased invasive behavior of CCOC.

8.
Eur J Pharm Sci ; 93: 405-9, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27516147

RESUMEN

The protein kinase PKCζ is involved in the fine regulation of the NF-κB transcriptional activity and, therefore, represents a potential pharmacological target in inflammatory diseases. We previously developed a selective, allosteric inhibitor (MA130) of PKCζ. Now, we investigated which of the NF-κB-regulated gene expressions are suppressed by MA130 after TNFα-stimulation of the macrophage model cell line U937. The analysis of gene expressions using a qPCR array revealed that many cytokines contributing to the pathogenesis and systemic inflammation in chronic obstructive pulmonary disease (COPD), including CCL2, CCL20, CSF2, CXCL1, CXCL10, IL1B and TNFα, were down-regulated by MA130 but not by a PKCζ-inactive control compound. Thus, we provided the first evidence that PKCζ is a potential target for the treatment of COPD by selective small molecules. MA130 inhibited only a subset of NF-κB-dependent gene expressions, suggesting that targeting PKCζ will be more tolerable than total inhibition of NF-κB activation.


Asunto(s)
Citocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pirazoles/farmacología , Animales , Citocinas/metabolismo , Regulación hacia Abajo , Humanos , Ratones , FN-kappa B/genética , Proteína Quinasa C/metabolismo , Células RAW 264.7 , Células U937
9.
Neurosci Lett ; 556: 166-9, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24135336

RESUMEN

Several classic and novel protein kinase C (PKC) isoforms are selectively distributed in specific cell types of the adult neuromuscular junction (NMJ), in the neuron, glia and muscle components, and are involved in many functions, including neurotransmission. Here, we investigate the presence in this paradigmatic synapse of atypical PKCs, full-length atypical PKC zeta (aPKCζ), its separated catalytic part (PKMζ) and atypical lambda-iota PKC (aPKCλ/ι). High resolution immunohistochemistry was performed using a pan-atypical PKC antibody. Our results show moderate immunolabeling on the three cells (presynaptic motor nerve terminal, teloglial Schwann cell and postsynaptic muscle cell) suggesting the complex involvement of atypical PKCs in synaptic function.


Asunto(s)
Isoenzimas/metabolismo , Unión Neuromuscular/enzimología , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C/metabolismo , Animales , Células Musculares/enzimología , Músculo Esquelético/enzimología , Músculo Esquelético/inervación , Ratas , Células de Schwann/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA