Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881301

RESUMEN

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Cinetocoros/química , Complejos Multiproteicos/química , Animales , Aurora Quinasa B/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Químicos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
2.
Microbiology (Reading) ; 170(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38226962

RESUMEN

Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.


Asunto(s)
Citoesqueleto , Flagelos
3.
Ann Hematol ; 103(9): 3573-3583, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39145781

RESUMEN

Primary myelofibrosis (PMF) is the most aggressive of the myeloproliferative neoplasms and patients require greater attention and likely require earlier therapeutic intervention. Currently approved treatment options are limited in their selective suppression of clonal proliferation resulting from driver- and coexisting gene mutations. Janus kinase inhibitors are approved for symptomatic patients with higher-risk PMF. Additionally, most ongoing clinical studies focus on patients with higher-risk disease and/or high rates of transfusion dependency. Optimal treatment of early/lower-risk PMF remains to be identified and needs randomized clinical trial evaluations. Pegylated interferon alfa is recommended for symptomatic lower-risk PMF patients based on phase 2 non-randomized studies and expert opinion. Ropeginterferon alfa-2b (ropeg) is a new-generation pegylated interferon-based therapy with favorable pharmacokinetics and safety profiles, requiring less frequent injections than prior formulations. This randomized, double-blind, placebo-controlled phase 3 trial will assess its efficacy and safety in patients with "early/lower-risk PMF", defined as pre-fibrotic PMF or PMF at low or intermediate-1 risk according to Dynamic International Prognostic Scoring System-plus. Co-primary endpoints include clinically relevant complete hematologic response and symptom endpoint. Secondary endpoints include progression- or event-free survival, molecular response in driver or relevant coexisting gene mutations, bone marrow response, and safety. Disease progression and events are defined based on the International Working Group criteria and well-published reports. 150 eligible patients will be randomized in a 2:1 ratio to receive either ropeg or placebo. Blinded sample size re-estimation is designed. Ropeg will be administered subcutaneously with a tolerable, higher starting-dose regimen. The study will provide important data for the treatment of early/lower-risk PMF for which an anti-clonal, disease-modifying agent is highly needed.


Asunto(s)
Interferón alfa-2 , Interferón-alfa , Polietilenglicoles , Mielofibrosis Primaria , Proteínas Recombinantes , Humanos , Mielofibrosis Primaria/tratamiento farmacológico , Polietilenglicoles/uso terapéutico , Polietilenglicoles/administración & dosificación , Polietilenglicoles/efectos adversos , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/administración & dosificación , Método Doble Ciego , Interferón-alfa/uso terapéutico , Interferón-alfa/efectos adversos , Interferón-alfa/administración & dosificación , Interferón alfa-2/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Resultado del Tratamiento , Anciano
4.
Environ Sci Technol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332486

RESUMEN

Plastic debris, including nanoplastic particles (NPPs), has emerged as an important global environmental issue due to its detrimental effects on human health, ecosystems, and climate. Atmospheric processes play an important role in the transportation and fate of plastic particles in the environment. In this study, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was employed to establish the first online approach for identification and quantification of airborne submicrometer polystyrene (PS) NPPs from laboratory-generated and ambient aerosols. The fragmentation ion C8H8+ is identified as the major tracer ion for PS nanoplastic particles, achieving an 1-h detection limit of 4.96 ng/m3. Ambient PS NPPs measured at an urban location in Texas are quantified to be 30 ± 20 ng/m3 by applying the AMS data with a constrained positive matrix factorization (PMF) method using the multilinear engine (ME-2). Careful analysis of ambient data reveals that atmospheric PS NPPs were enhanced as air mass passed through a waste incinerator plant, suggesting that incineration of waste may serve as a source of ambient NPPs. The online quantification of NPPs achieved through this study can significantly improve our understanding of the source, transport, fate, and climate effects of atmospheric NPPs to mitigate this emerging global environmental issue.

5.
Environ Res ; 245: 117975, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145736

RESUMEN

In this study, stone coal mines in the lower reaches of the Zijiang River were adopted as the research object. To analyze the spatial distribution, sources, and health risks of heavy metals in the surrounding soil of stone coal mines, 82 topsoil samples were collected in the study area, and the contents of 8 heavy metals including Cd, Hg, As, Cr, Pb, Cu, Ni, and Zn were determined. The spatial distribution of heavy metals was analyzed using ArcGIS, and the pollution sources of heavy metals were identified using Positive matrix factorization (PMF). Then, Monte Carlo and health risk assessment models were used to evaluate the health risks of different populations. The results showed that the average content of heavy metals followed the order of Zn > Cr > Pb > Cu > Ni > As > Cd > Hg, and the contents of all heavy metals were higher than the soil background values of Hunan Province. The high-value areas of heavy metals content were mostly concentrated in the central region close to areas with a notable concentration of stone coal mines. PMF identified four pollution sources, namely, mining activities (26.9%), atmospheric deposition (18.8%), natural sources (32.8%) and agricultural sources (21.5%). The carcinogenic and non-carcinogenic risks for children were higher than those for adults, with As and Cd posing higher carcinogenic risks to children. Based on the source of health risks, it was determined that the health risks could be primarily attributed to agricultural sources, and As was the main heavy metal causing health risks. This study provides theoretical support for treating heavy metal pollution in mining basins.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Suelo , Mercurio/análisis , Medición de Riesgo , Carbón Mineral , China
6.
Environ Res ; 251(Pt 2): 118696, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493860

RESUMEN

The accumulation of heavy metals (HMs) in soil caused by mineral resource exploitation and its ancillary industrial processes poses a threat to ecology and public health. Effective risk control measures require a quantification of the impacts and contributions to health risks from individual sources of soil HMs. Based on high-density sampling, soil contamination risk indexes, positive matrix factorization (PMF) model, Monte Carlo simulation and human health risk analysis model were applied to investigate the risk of HMs in a typical mining town in North China. The results showed that As was the most dominant soil pollutant factor, Cd and Hg were the most dominant soil ecological risk factors, and Cr and Ni were the most dominant health risk factors in the study area. Overall, both pollution and ecological risks were at low levels, while there were still some higher hazard areas located in the central and south-central part of the region. According to the probabilistic health risk assessment (HRA), children suffered greater health risks than adults, with 21.63% of non-carcinogenic risks and 53.24% of carcinogenic risks exceeding the prescribed thresholds (HI > 1 and TCR>1E-4). The PMF model identified five potential sources: fuel combustion (FC), processing of building materials with limestone as raw materials (PBML), industry source (IS), iron ore mining combined with garbage (IOG), and agriculture source (AS). PBML is the primary source of soil HM contamination, as well as the major anthropogenic source of carcinogenic risk for all populations. Agricultural inputs associated with As are the major source of non-carcinogenic risk. This study offers a good example of probabilistic HRA using specific sources, which can provide a valuable reference for strategy establishment of pollution remediation and risk prevention and control.


Asunto(s)
Metales Pesados , Minería , Método de Montecarlo , Contaminantes del Suelo , China , Medición de Riesgo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Humanos , Adulto , Niño , Monitoreo del Ambiente/métodos
7.
Environ Res ; 257: 119185, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38810828

RESUMEN

Pollution in industrial parks has long been characterized by complex pollution sources and difficulties in identifying pollutant origins. This study focuses on a typical industrial park consisting of 11 factories (F1-F11) including organic pigment, inorganic pigment, and chemical factories in Hunan Province, China, here, a total of 327 sample points were surveyed. Eight pollutants (Mn, Cd, As, Co, NH3-N, l, 1,2-Trichloroethane, chlorobenzene, and petroleum hydrocarbons) were classified as contaminants of concern (COCs). This study assessed the contributions of driving factors to the distribution of COCs in the soil. Pollutant source apportionment was conducted using positive matrix factorization (PMF) and random forest (RF). The results revealed that the main factors driving pollution are groundwater migration, non-compliant emissions, leaks during production, and interactions among pollutants. The primary pollution sources were four chemical factories and an inorganic pigment factory. Source 5 demonstrates significant correlations with TCA (29.6%), CB (30%), and As (31.6%). Two chemical factories (F7 and F10) are the most significant pollution source with a risk assessment contribution rate of more than 60%. The present study sheds some light on the contamination characteristics, source apportionment and source-health risk assessment of COCs in industrial park. By utilizing the proposed research framework, decision-makers can effectively prioritize and address identified pollution sources.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Suelo , Medición de Riesgo , Contaminantes del Suelo/análisis , Humanos , China , Monitoreo del Ambiente/métodos , Industrias
8.
Environ Res ; 243: 117860, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072108

RESUMEN

China and South Korea are the most polluted countries in East Asia due to significant urbanization and extensive industrial activities. As neighboring countries, collaborative management plans to maximize public health in both countries can be helpful in reducing transboundary air pollution. To support such planning, PM2.5 inorganic and organic species were determined in simultaneously collected PM2.5 integrated filters. The resulting data were used as inputs to positive matrix factorization, which identified nine sources at the ambient air monitoring sites in both sites. Secondary nitrate, secondary sulfate/oil combustion, soil, mobile, incinerator, biomass burning, and secondary organic carbon (SOC) were found to be sources at both sampling sites. Industry I and II were only identified in Seoul, whereas combustion and road dust sources were only identified in Beijing. A subset of samples was selected for exposure assessment. The expression levels of IL-8 were significantly higher in Beijing (167.7 pg/mL) than in Seoul (72.7 pg/mL). The associations between the PM2.5 chemical constituents and its contributing sources with PM2.5-induced inflammatory cytokine (interleukin-8, IL-8) levels in human bronchial epithelial cells were investigated. For Seoul, the soil followed by the secondary nitrate and the biomass burning showed increase with IL-8 production. However, for the Beijing, the secondary nitrate exhibited the highest association with IL-8 production and SOC and biomass burning showed modest increase with IL-8. As one of the highest contributing sources in both cities, secondary nitrate showed an association with IL-8 production. The soil source having the strongest association with IL-8 production was found only for Seoul, whereas SOC showed a modest association only for Beijing. This study can provide the scientific basis for identifying the sources to be prioritized for control to provide effective mitigation of particulate air pollution in each city and thereby improve public health.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Beijing , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Seúl , Interleucina-8/análisis , Citocinas , Nitratos/análisis , Monitoreo del Ambiente , Polvo/análisis , China , República de Corea , Suelo , Carbono/análisis , Estaciones del Año
9.
J Nanobiotechnology ; 22(1): 506, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180102

RESUMEN

BACKGROUND: Diabetic atherosclerosis is one of the main causes of morbidity and mortality worldwide, but its therapeutic options are limited. Liraglutide (LIR), a synthetic analog of GLP-1 approved as an anti-obesity drug by the FDA, has been reported as a promising drug for diabetic atherosclerosis. However, the main problem with LIR is its use that requires regular parenteral injections, which necessitates the improvement of drug delivery for increased efficiency and minimization of injection numbers. RESULTS: The objective of our present study was to prepare and characterize nanoparticles (BSA@LIR-PMF) for targeted drug delivery using LIR-encapsulated platelet membrane fragments (PMF) coated bovine serum albumin (BSA). We used various methods to characterize the prepared nanoparticles and evaluated their efficiency on diabetes-induced atherosclerosis in vitro and in vivo. The results showed that the nanoparticles were spherical and had good stability and uniform size with intact membrane protein structure. The loading and encapsulation rates (LR and ER) of BSA@LIR-PMF were respectively 7.96% and 85.56%, while the cumulative release rate was around 77.06% after 24 h. Besides, we also examined the impact of BSA@LIR-PMF on the proliferation, migration, phagocytosis, reactive oxygen species (ROS) levels, oxidative phosphorylation, glycolysis, lactate and ATP levels, and lipid deposition in the aortas. The results indicated that BSA@LIR-PMF could effectively inhibit ox-LDL-stimulated abnormal cell proliferation and migration, reduce the level of ROS and lactate concentration, and enhance the level of ATP, thereby improving oxidative phosphorylation in ox-LDL-treated cells. CONCLUSION: BSA@LIR-PMF significantly inhibited diabetes-induced atherosclerosis. It was anticipated that the BSA@LIR-PMF nanoparticles might be used for treating diabetes-associated cardiovascular complications.


Asunto(s)
Aterosclerosis , Plaquetas , Liraglutida , Albúmina Sérica Bovina , Animales , Aterosclerosis/tratamiento farmacológico , Liraglutida/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Albúmina Sérica Bovina/química , Ratones , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/química , Bovinos , Humanos , Tamaño de la Partícula
10.
Radiat Environ Biophys ; 63(3): 307-322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020222

RESUMEN

To enhance stakeholder engagement and foster the inclusion of interests of citizens in radiation protection research, a comprehensive online survey was developed within the framework of the European Partnership PIANOFORTE. This survey was performed in 2022 and presented an opportunity for a wide range of stakeholders to voice their opinions on research priorities in radiation protection for the foreseeable future. Simultaneously, it delved into pertinent issues surrounding general radiation protection. The PIANOFORTE e-survey was conducted in the English language, accommodating a diverse range of participants. Overall, 440 respondents provided their insights and feedback, representing a broad geographical reach encompassing 29 European countries, as well as Canada, China, Colombia, India, and the United States. To assess the outcomes, the Positive Matrix Factorization numerical model was applied, in addition to qualitative and quantitative assessment of individual responses, enabling the discernment of four distinct stakeholder groups with varying attitudes. While the questionnaire may not fully represent all stakeholders due to the limited respondent pool, it is noteworthy that approximately 70% of the participants were newcomers to comparable surveys, demonstrating a proactive attitude, a strong willingness to collaborate and the necessity to continuously engage with stakeholder groups. Among the individual respondents, distinct opinions emerged particularly regarding health effects of radiation exposure, medical use of radiation, radiation protection of workers and the public, as well as emergency and recovery preparedness and response. In cluster analysis, none of the identified groups had clear preferences concerning the prioritization of future radiation protection research topics.


Asunto(s)
Protección Radiológica , Encuestas y Cuestionarios , Humanos , Internet , Participación de los Interesados , Masculino , Femenino
11.
J Environ Manage ; 352: 120015, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38194873

RESUMEN

The most common construction material used in Taiwan is concrete, potentially contaminated by geologic heavy metals (HMs). Younger children spend much time indoors, increasing HM exposure risks from household dust owing to their behaviors. We evaluated arsenic (As), cadmium (Cd), and lead (Pb) concentrations in fingernails among 280 preschoolers between 2017 and 2023. We also analyzed HM concentrations, including As, Cd, Pb, chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn), in 90 household dust and 50 road dust samples from a residential area where children lived between 2019 and 2021 to deepen the understanding of sources and health risks of exposure to HMs from household dust. The average As, Cd, and Pb concentrations in fingernails were 0.12 ± 0.06, 0.05 ± 0.05, and 0.95 ± 0.77 µg/g, respectively. Soil parent materials, indoor construction activities, vehicle emissions, and mixed indoor combustion were the pollution sources of HMs in household dust. Higher Cr and Pb levels in household dust may pose non-carcinogenic risks to preschoolers. Addressing indoor construction and soil parent materials sources is vital for children's health. The finding of the present survey can be used for indoor environmental management to reduce the risks of HM exposure and avoid potential adverse health effects for younger children.


Asunto(s)
Arsénico , Metales Pesados , Humanos , Preescolar , Cadmio , Monitoreo del Ambiente , Polvo/análisis , Plomo , Metales Pesados/análisis , Cromo , Medición de Riesgo , Suelo , China , Ciudades
12.
J Environ Manage ; 369: 122322, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217898

RESUMEN

Identifying the primary source of heavy metals (HMs) pollution and the key pollutants is crucial for safeguarding eco-health and managing risks in industrial vicinity. For this purpose, this investigation was carried out to investigate the pollution area identification with soil static environmental capacity (QI), receptor model-oriented critical sources, and Monte Carlo simulation (MCS) based probabilistic environmental and human health hazards associated with HMs in agricultural soils of Narayanganj, Bangladesh. The average concentration of Cr, Ni, Cu, Cd, Pb, Co, Zn, and Mn were 98.67, 63.41, 37.39, 1.28, 23.93, 14.48, 125.08, and 467.45 mg/kg, respectively. The geoaccumulation index identified Cd as the dominant metal, indicating heavy to extreme contamination in soils. The QI revealed that over 99% of the areas were polluted for Ni and Cd with less uncertain regions whereas Cr showed a significant portion of areas with uncertain pollution status. The positive matrix factorization (PMF) model identified three major sources: agricultural (29%), vehicular emissions (25%), and industrial (46%). The probabilistic assessment of health hazards indicated that both carcinogenic and non-carcinogenic risks for adult male, adult female, and children were deemed unacceptable. Moreover, children faced a higher health hazard compared to adults. For adult male, adult female, and children, industrial operations contributed 48.4%, 42.7%, and 71.2% of the carcinogenic risks, respectively and these risks were associated with Ni and Cr as the main pollutants of concern. The study emphasizes valuable scientific insights for environmental managers to tackle soil pollution from HMs by effectively managing anthropogenic sources. It could aid in devising strategies for environmental remediation engineering and refining industry standards.

13.
Water Sci Technol ; 89(8): 2191-2208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678418

RESUMEN

This study aimed to assess spatiotemporal water quality variation and its suitability for irrigation and domestic purposes in Lah River using the irrigation water quality index (IWQI) and the weighted arithmetic water quality index (WAWQI). The IWQI analysis result showed that the sodium absorption ratio, residual sodium carbonate, potential salinity, Kelly index, magnesium ratio, sodium percentage, and permeability index were found to be 1.07 mEq/L, -0.43 mEq/L, 0.8 mEq/L, 0.78 mEq/L, 43.01%, 42.95%, and 63.46%, respectively. The IWQIs revealed that the water quality of the river was appropriate for agricultural use during the dry season. Furthermore, the calculated WAWQI of the river water ranged from 123.13 to 394.72 during the wet season, indicating the high pollution levels in the Lah River and incompatibility for drinking purposes. On the other hand, the principal component analysis identified two pollution sources during the wet season and three during the dry season. In addition, the positive matrix prioritization model predicted the pollution source's contribution quite well with a signal-to-noise ratio of >2 and a residual error between -3 and 3 for both seasons. This study suggests that water quality of Lah River is degrading periodically necessitating proper pollution management.


Asunto(s)
Ríos , Calidad del Agua , Ríos/química , Etiopía , Análisis Multivariante , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Estaciones del Año
14.
Environ Geochem Health ; 46(9): 346, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073472

RESUMEN

Heavy metals (HMs) seriously harm soil environment and threaten crop quality and human health. The aim of the study was to investigate the characteristics, quantify the sources and assess the risks of HMs in soil of upper Bailang River Basin (UBRB). The results indicated that the soils in UBRB were at a non-polluted level and posed a low ecological risk to the environment as a whole. The main pollutants were Ni and Cr obtained by indices Pi and Igeo. Based on the consideration of toxicity, the fuzzy comprehensive evaluation model and Ei index revealed that Hg and Cd were dominating pollutants and ecological risk factors of soil in UBRB. The positive matrix factorization model ascertained five potential sources of soil HMs, namely, plastic processing, energy activities, parent material, transportation and agriculture mixed source and industrial manufacturing, with contribution rates of 17%, 7%, 15%, 29% and 32%, respectively. Natural source primarily determined the non-carcinogenic risk for all populations, accounting for about 43% of the total risk. Industrial manufacturing mainly determined the carcinogenic risk, accounting for about 45%. For adults, the risk was acceptable for most of the sample points. For children, potential non-carcinogenic risks were present in 13.19% of the sample sites, which were mainly located in the west, and unacceptable carcinogenic risks were present in 57.21% of the sample sites, which were mainly concentrated in the western and central parts.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Ríos , Contaminantes del Suelo , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , China , Humanos , Ríos/química , Monitoreo del Ambiente/métodos , Adulto , Niño
15.
Environ Geochem Health ; 46(2): 50, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227205

RESUMEN

Identifying the sources of heavy metals (HMs) in river sediments is crucial to effectively mitigate sediment HM pollution and control its associated ecological risks in coal-mining areas. In this study, ecological risks resulting from different pollution sources were evaluated using an integrated method combining the positive matrix factorization (PMF) and the potential ecological risk index (RI) model. A total of 59 sediment samples were collected from the Kuye River and analyzed for eight HMs (Zn, Cr, Ni, Cu, Pb, As, Cd, and Hg). The obtained results showed that the sediment HM contents were higher than the corresponding soil background values in Shaanxi Province. The average sediment Hg content was 3.42 times higher than the corresponding background value. The PMF results indicated that HMs in the sediments were mainly derived from industrial, traffic, agricultural, and coal-mining sources. The RI values ranged from 26.15 to 483.70. Hg was the major contributor (75%) to the ecological risk in the vicinity of the Yanjiata Industrial Park. According to the PMF-based RI model, coal-mining activities exhibited the strongest impact on the river ecosystem (48.79%), followed, respectively, by traffic (34.41%), industrial (12.70%), and agricultural (4.10%) activities. These results indicated that the major anthropogenic sources contributing to the HM contents in the sediments are not necessarily those posing the greatest ecological risks. The proposed integrated approach in this study was useful in evaluating the ecological risks associated with different anthropogenic sources in the Kuye River, providing valuable suggestions for reducing sediment HM pollution and effectively protecting river ecosystems.


Asunto(s)
Mercurio , Metales Pesados , Ecosistema , Ríos , China , Carbón Mineral
16.
Environ Geochem Health ; 46(4): 129, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483651

RESUMEN

The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , Molibdeno/análisis , Plomo/análisis , Estanques , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Mercurio/análisis , Medición de Riesgo , China
17.
Environ Geochem Health ; 46(3): 94, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374291

RESUMEN

The mining and utilization of coal resources has not only promoted rapid economic development but also poses a potential threat to the ecological environment. The purpose of this study is to clarify the effects both of mining and land use types on the spatial distribution and particular sources of heavy metals in soil, using inverse distance weighted (IDW) and the Positive Matrix Factorization (PMF) model. A total of 99 topsoil and profile soil samples across different land use types and mining conditions were collected. The contamination of soil with Cd, Pb, and Hg in the research area was most severe, with the coefficient of variation (CV) of Hg being the largest, while also being heavily influenced by human activities. Severely polluted regions were mainly distributed in the center of the coal mining area, as well as near the highway. The contents of heavy metals for various land use patterns were ranked as follows: forestland > farmland > bare land > grassland > building land. Hg, Cd, Pb, Cr, and Zn had showed migration in the 0-60 cm depth range, and the enrichment factors (EFs) of Cd, Pb, Hg, and As in the soil profile were the most significant. The PMF demonstrated that the contributions of industrial activities and atmospheric deposition, transportation and mining activities, agricultural activities, and natural sources accounted for 31.25%, 28.13%, 22.24%, and 18.38%, respectively. The migration and deposition of atmospheric particulate matter from coal mining, transportation, and coal combustion under winds triggered heavy metal contamination in semi-arid areas of northern China. This phenomenon has important implications for the prevention and reduction of heavy metal pollution through various effective measures in coal-mining cities in northern China.


Asunto(s)
Minas de Carbón , Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , China , Mercurio/análisis , Carbón Mineral/análisis , Medición de Riesgo
18.
Environ Monit Assess ; 196(2): 163, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231424

RESUMEN

The present study frames the physico-chemical characteristics and the source apportionment of PM10 over National Capital Region (NCR) of India using the receptor model's Positive Matrix Factorization (PMF) and Principal Momponent Mnalysis/Absolute Principal Component Score-Multilinear Regression (PCA/APCS-MLR). The annual average mass concentration of PM10 over the urban site of Faridabad, IGDTUW-Delhi and CSIR-NPL of NCR-Delhi were observed to be 195 ± 121, 275 ± 141 and 209 ± 81 µg m-3, respectively. Carbonaceous species (organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC)), elemental constituents (Al, Ti, Na, Mg, Cr, Mn, Fe, Cu, Zn, Br, Ba, Mo Pb) and water-soluble ionic components (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Mg2+, Ca2+) of PM10 were entrenched to the receptor models to comprehend the possible sources of PM10. The PMF assorted sources over Faridabad were soil dust (SD 15%), industrial emission (IE 14%), vehicular emission (VE 19%), secondary aerosol (SA 23%) and sodium magnesium salt (SMS 17%). For IGDTUW-Delhi, the sources were SD (16%), VE (19%), SMS (18%), IE (11%), SA (27%) and VE + IE (9%). Emission sources like SD (24%), IE (8%), SMS (20%), VE + IE (12%), VE (15%) and SA + BB (21%) were extracted over CSIR-NPL, New Delhi, which are quite obvious towards the sites. PCA/APCS-MLR quantified the similar sources with varied percentage contribution. Additionally, catalogue the Conditional Bivariate Probability Function (CBPF) for directionality of the local source regions and morphology as spherical, flocculent and irregular were imaged using a Field Emission-Scanning Electron Microscope (FE-SEM).


Asunto(s)
Carbono , Monitoreo del Ambiente , India , Polvo , Agua
19.
Bull Environ Contam Toxicol ; 113(2): 16, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068285

RESUMEN

In recent years, the coastal area in East China has experienced elevated volatile organic compounds (VOCs) levels during specific periods. VOCs have become one of the major atmospheric pollutants in these areas. In this study, 64 compounds including alkanes, alkenes, halohydrocarbons, aromatics, and oxygenated VOCs (OVOCs) were obtained by the TO-15 method through a 12-month campaign in industrial, urban and suburban areas in the Yangtze River Delta of China. The overall trends of total VOC (TVOC) concentrations at eight sampling sites were as follows: winter > autumn > spring > summer. The proportion of VOC categories was various at industrial sites, while OVOCs and halohydrocarbons had high proportions at urban sites and suburban sites, respectively. Coating, vehicle emission, petrochemical source, industrial source, and gasoline volatilization were identified as the major VOC emission sources by the positive matrix factorization model. Petrochemical and coating sources were the prime VOC sources at industrial sites. Aromatics contributed the most ozone formation potential at industrial sites, while OVOCs provided the main contributions at both urban and suburban sites during four seasons. According to the health risk assessment, a high probability of non-carcinogenic risk existed at three industrial sites. Special attention should be given to certain VOCs, such as acrolein and 1,2-dibromoethane in industrial areas.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , China , Contaminantes Atmosféricos/análisis , Ríos/química , Estaciones del Año , Industrias
20.
Rinsho Ketsueki ; 65(5): 375-384, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825516

RESUMEN

Many novel agents have been developed for BCR::ABL1-negaive myeloproliferative neoplasms (MPN), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Some of these agents not only achieve hematologic complete response, reduce spleen size, and alleviate constitutional symptoms, but also induce molecular response, which means that they reduce the allele burden of driver gene mutations. These agents also prevent and alleviate fibrosis in bone marrow, which reduces the incidence of thrombotic events and disease progression and might improve prognosis. This article discusses the latest findings and promising treatments, including ongoing clinical trials, in PV, ET, and PMF.


Asunto(s)
Trastornos Mieloproliferativos , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/terapia , Trastornos Mieloproliferativos/diagnóstico , Mutación , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA