Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(8): 3266-3281, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38742574

RESUMEN

Soil phosphorus (P) availability affects plant growth and distribution. However, it is still unknown how sex-specific variation in functional traits affects plants' P acquisition and soil P transformation. On wet sites, female poplars had a greater specific root length (SRL), and a higher diversity of arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacteria (PSB). Male poplars living on wet sites increased the abundance of AMF and PSB communities and enhanced moderately labile and highly resistant organic P mineralisation via increased phosphatase activity. In contrast, on the dry site, the abundance and diversity of AMF and PSB communities increased in females, enhancing moderately labile and highly resistant organic P mineralisation via elevating phosphatase activities. Males maintained greater SRL and promoted Ca-P mobilisation via the release of root carboxylic acids and rhizosphere acidification on the dry site. The AMF community diversity followed a similar pattern as that of the PSB community when altering the P availability of different-sex plants. Our results indicated that organic P and Ca-P are the major sources of plant-available P in natural P. euphratica forests. Seasonal shifts and geographic locations affected the share of organic and inorganic P pools, and AMF and PSB diversities, ultimately altering sex-specific P acquisition strategies of plants.


Asunto(s)
Bosques , Micorrizas , Fósforo , Populus , Agua , Populus/metabolismo , Populus/fisiología , Fósforo/metabolismo , Micorrizas/fisiología , Agua/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo , Rizosfera
2.
New Phytol ; 230(1): 304-315, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33205416

RESUMEN

Arbuscular mycorrhizal (AM) fungi gain access to nutrient patches outside the rhizosphere by producing an extensive network of fine hyphae. Here, we focused on establishing the mechanism by which AM fungal hyphae reach discrete organic patches with a cohort of functional bacteria transported in a biofilm on their surface. We investigated the mechanisms and impact of the translocation of phosphate solubilising bacteria (PSB) along AM fungal hyphae in bespoke microcosms. An in vitro culture experiment was also conducted to determine the direct impact of hyphal exudates of AM fungi upon the growth of PSB. The extraradical hyphae of AM fungi can transport PSB to organic phosphorus (P) patches and enhance organic P mineralisation both under in vitro culture and soil conditions. Bacteria move in a thick water film formed around fungal hyphae. However, the bacteria cannot be transferred to the organic P patch without an energy source in the form of hyphal exudates. Our results could be harnessed to better manage plant-microbe interactions and improve the ability of biological inocula involving AM fungi and bacteria to enhance the sustainability of agricultural crops in P limited conditions.


Asunto(s)
Micorrizas , Bacterias , Hifa , Fósforo , Raíces de Plantas , Microbiología del Suelo
3.
Oecologia ; 193(4): 843-855, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32816111

RESUMEN

Plants that produce specialised cluster roots, which mobilise large quantities of poorly available nutrients such as phosphorus (P), can provide a benefit to neighbouring plants that produce roots in the cluster rhizosphere, as demonstrated previously in pot studies. To be effective, such roots must be present within the short time of peak cluster activity. We tested if this requirement is met, and quantified potential P benefits, in a hyperdiverse Mediterranean woodland of southwest Australia where cluster-rooted species are prominent. Using minirhizotrons, we monitored root dynamics during the wet season in the natural habitat. We found non-cluster roots intermingling with all 57 of the observed cluster roots of the studied tree species, Banksia attenuata. Almost all (95%) of these cases were observed in a high-moisture treatment simulating the 45-year average, but not present when we intercepted some of the rainfall. We estimate that cluster-root activity can increase P availability to intermingling roots to a theoretical maximum of 80% of total P in the studied soil. Due to their high P-remobilisation efficiency (89%), which results from P rapidly being relocated from cluster roots within the plant, senesced Banksia cluster roots are a negligible P source for other roots. We conclude that, rather than serving as a P source, it is the cluster-root activity, particularly the exudation of carboxylates, that may improve the coexistence of interacting species that are capable of root intermingling, thus potentially promoting species diversity in nutrient-poor habitats, and that this mechanism will be less effective in a drying climate.


Asunto(s)
Fósforo , Proteaceae , Australia , Raíces de Plantas , Rizosfera , Suelo
4.
Sci Total Environ ; 950: 175335, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117195

RESUMEN

The excessive application of phosphorus (P) fertiliser and its poor utilisation efficiency have led to significant amounts of P being retained in agricultural soils in unavailable forms. The application of alkaline lignin to soil and its inoculation with arbuscular mycorrhizal fungi (AMF) have both been shown to improve plant P nutrition. However, their combined effects on soil P transformation remain unclear, particularly in cadmium (Cd)-contaminated soils. A potting experiment was conducted to examine the combined effects of AMF and alkaline lignin on soil P and Cd bioavailability and on the uptake of P and Cd by lettuce (Lactuca sativa L.) that were grown for 56 d in a growth chamber. Combined AMF and alkaline lignin treatment increased soil P availability and alkaline phosphatase activity. It furthermore increased bioavailable Cd concentrations of rhizosphere and bulk soils by 48 % and 72 %, respectively, and the Cd concentration in roots by 85 %, but the Cd concentration was not affected in the edible parts (shoots) of the lettuce. Moreover, the combined treatment increased shoot biomass by 26-70 % and root biomass by 99-164 %. Our findings suggested that the combined use of AMF and alkaline lignin mobilised both P and Cd in soil but did not increase the accumulation of Cd in the shoots of plants growing in Cd-contaminated soils, these results would provide guideline for increasing Cd tolerance of plants and their yield.


Asunto(s)
Cadmio , Lactuca , Lignina , Micorrizas , Fósforo , Contaminantes del Suelo , Micorrizas/fisiología , Lactuca/metabolismo , Cadmio/metabolismo , Fósforo/metabolismo , Contaminantes del Suelo/metabolismo , Lignina/metabolismo , Suelo/química , Microbiología del Suelo , Fertilizantes
5.
Plant Soil ; 461(1-2): 69-89, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720207

RESUMEN

AIMS: Organic acid exudation by plant roots is thought to promote phosphate (P) solubilisation and bioavailability in soils with poorly available nutrients. Here we describe a new combined experimental (microdialysis) and modelling approach to quantify citrate-enhanced P desorption and its importance for root P uptake. METHODS: To mimic the rhizosphere, microdialysis probes were placed in soil and perfused with citrate solutions (0.1, 1.0 and 10 mM) and the amount of P recovered from soil used to quantify rhizosphere P availability. Parameters in a mathematical model describing probe P uptake, citrate exudation, P movement and citrate-enhanced desorption were fit to the experimental data. These parameters were used in a model of a root which exuded citrate and absorbed P. The importance of soil citrate-P mobilisation for root P uptake was then quantified using this model. RESULTS: A plant needs to exude citrate at a rate of 0.73 µmol cm-1 of root h-1 to see a significant increase in P absorption. Microdialysis probes with citrate in the perfusate were shown to absorb similar quantities of P to an exuding root. CONCLUSION: A single root exuding citrate at a typical rate (4.3 × 10-5 µmol m-1 of root h-1) did not contribute significantly to P uptake. Microdialysis probes show promise for measuring rhizosphere processes when calibration experiments and mathematical modelling are used to decouple microdialysis and rhizosphere mechanisms.

6.
Sci Total Environ ; 541: 292-302, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26410704

RESUMEN

Two groundwater dominated catchments with contrasting land use (Grassland and Arable) and soil chemistry were investigated for influences on P transfer below the rooting zone, via the aquifer and into the rivers. The objective was to improve the understanding of hydrochemical process for best management practise and determine the importance of P transfer via groundwater pathways. Despite the catchments having similar inorganic P reserves, the iron-rich soils of the Grassland catchment favoured P mobilisation into soluble form and transfer to groundwater. Sites in that catchment had elevated dissolved reactive P concentrations in groundwater (>0.035 mg l(-1)) and the river had flow-weighted mean TRP concentrations almost three times that of the aluminium-rich Arable catchment (0.067 mg l(-1) compared to 0.023 mg l(-1)). While the average annual TRP flux was low in both catchments (although three times higher in the Grassland catchment; 0.385 kg ha(-1) compared to 0.128 kg ha(-1)), 50% and 59% of TRP was lost via groundwater, respectively, during winter periods that were closed for fertiliser application. For policy reviews, slow-flow pathways and associated time-lags between fertiliser application, mobilisation of soil P reserves and delivery to the river should be carefully considered when reviewing mitigating strategies and efficacy of mitigating measures in groundwater fed catchments. For example, while the Grassland catchment indicated a soil-P chemistry susceptibility, the Arable catchment indicated a transient point source control; both resulted in sustained or transient periods of elevated low river-flow P concentrations, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA