Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.577
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900789

RESUMEN

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Asunto(s)
COVID-19 , Receptor para Productos Finales de Glicación Avanzada , SARS-CoV-2 , Humanos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , COVID-19/complicaciones , COVID-19/virología , Animales , Ratones , Inflamación/metabolismo , Inflamación/patología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Lesión Pulmonar/inmunología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Masculino , Pulmón/patología , Pulmón/metabolismo , Pulmón/inmunología , Femenino
2.
Brain ; 147(3): 1025-1042, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787114

RESUMEN

Progress in the development of effective chemotherapy is producing a growing population of patients with acute and chronic painful chemotherapy-induced peripheral neuropathy (CIPN), a serious treatment-limiting side effect for which there is currently no US Food and Drug Administration-approved treatment. CIPNs induced by diverse classes of chemotherapy drugs have remarkably similar clinical presentations, leading to the suggestion they share underlying mechanisms. Sensory neurons share with immune cells the ability to detect damage associated molecular patterns (DAMPs), molecules produced by diverse cell types in response to cellular stress and injury, including by chemotherapy drugs. DAMPs, in turn, are ligands for pattern recognition receptors (PRRs), several of which are found on sensory neurons, as well as satellite cells, and cells of the immune system. In the present experiments, we evaluated the role of two PRRs, TLR4 and RAGE, present in dorsal root ganglion (DRG), in CIPN. Antisense (AS)-oligodeoxynucleotides (ODN) against TLR4 and RAGE mRNA were administered intrathecally before ('prevention protocol') or 3 days after ('reversal protocol') the last administration of each of three chemotherapy drugs that treat cancer by different mechanisms (oxaliplatin, paclitaxel and bortezomib). TLR4 and RAGE AS-ODN prevented the development of CIPN induced by all three chemotherapy drugs. In the reversal protocol, however, while TLR4 AS-ODN completely reversed oxaliplatin- and paclitaxel-induced CIPN, in rats with bortezomib-induced CIPN it only produced a temporary attenuation. RAGE AS-ODN, in contrast, reversed CIPN induced by all three chemotherapy drugs. When a TLR4 antagonist was administered intradermally to the peripheral nociceptor terminal, it did not affect CIPN induced by any of the chemotherapy drugs. However, when administered intrathecally, to the central terminal, it attenuated hyperalgesia induced by all three chemotherapy drugs, compatible with a role of TLR4 in neurotransmission at the central terminal but not sensory transduction at the peripheral terminal. Finally, since it has been established that cultured DRG neurons can be used to study direct effects of chemotherapy on nociceptors, we also evaluated the role of TLR4 in CIPN at the cellular level, using patch-clamp electrophysiology in DRG neurons cultured from control and chemotherapy-treated rats. We found that increased excitability of small-diameter DRG neurons induced by in vivo and in vitro exposure to oxaliplatin is TLR4-dependent. Our findings suggest that in addition to the established contribution of PRR-dependent neuroimmune mechanisms, PRRs in DRG cells also have an important role in CIPN.


Asunto(s)
Antineoplásicos , Neuralgia , Humanos , Estados Unidos , Animales , Ratas , Bortezomib , Oxaliplatino/toxicidad , Receptor Toll-Like 4 , Neuralgia/inducido químicamente , Células Receptoras Sensoriales , Oligodesoxirribonucleótidos , Paclitaxel , Antineoplásicos/toxicidad
3.
J Cell Mol Med ; 28(14): e18542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046369

RESUMEN

This study aims to investigate the relationship between toxoplasmosis and this pathway, which may be effective in the formation of epilepsy by acting through the HMGB1/RAGE/TLR4/NF-κB signalling pathway in patients with idiopathic epilepsy. In the study, four different experimental groups were formed by selecting Toxoplasma gondii IgG positive and negative patients with idiopathic epilepsy and healthy controls. Experimental groups were as follows: Group 1: Epilepsy+/Toxo- (E+, T-) (n = 10), Group 2: Epilepsy-/Toxo- (E-, T-) (n = 10), Group 3: Epilepsy-/Toxo+ (E-, T+) (n = 10), Group 4: Epilepsy+/Toxo+ (E+, T+) (n = 10). HMGB1, RAGE, TLR4, TLR1, TLR2, TLR3, IRAK1, IRAK2, IKBKB, IKBKG, BCL3, IL1ß, IL10, 1 L8 and TNFα mRNA expression levels in the HMGB/RAGE/TLR4/NF-κB signalling pathway were determined by quantitative simultaneous PCR (qRT-PCR) after collecting blood samples from all patients in the groups. Statistical analysis was performed by one-way ANOVA followed by LSD post-hoc tests, and p < 0.05 was considered to denote statistical significance. The gene expression levels of HMGB1, TLR4, IL10, IL1B, IL8, and TLR2 were significantly higher in the G1 group than in the other groups (p < 0.05). In the G3 group, RAGE and BCL3 gene expression levels were significantly higher than in the other groups (p < 0.05). In the G4 group, however, IRAK2, IKBKB, and IKBKG gene expression levels were significantly higher than in the other groups (p < 0.05). HMGB1, TLR4, IRAK2, IKBKB, IL10, IL1B, IL1B, and IL8 in this signalling pathway are highly expressed in epilepsy patients in G1 and seizures occur with the stimulation of excitatory mechanisms by acting through this pathway. The signalling pathway in epilepsy may be activated by HMGB1, TLR4, and TLR2, which are considered to increase the level of proinflammatory cytokines. In T. gondii, this pathway is activated by RAGE and BCL3.


Asunto(s)
Epilepsia , Proteína HMGB1 , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Toxoplasmosis , Humanos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Masculino , Femenino , Epilepsia/metabolismo , Epilepsia/genética , Epilepsia/parasitología , Adulto , Toxoplasmosis/parasitología , Toxoplasmosis/metabolismo , Toxoplasmosis/complicaciones , Toxoplasmosis/sangre , Toxoplasmosis/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad , Antígenos de Neoplasias , Proteínas Quinasas Activadas por Mitógenos
4.
Artículo en Inglés | MEDLINE | ID: mdl-39076084

RESUMEN

The soluble receptor for advanced glycation end-products (sRAGE) is a marker of alveolar type I cell injury associated with outcomes COVID-19 pneumonia. How plasma sRAGE changes over time and whether it remains associated with long-term clinical outcomes beyond a single measurement in COVID-19 has not been well-studied. We studied two cohorts in randomized clinical trials of monoclonal antibody treatment for COVID-19 (bamlanivimab and tixagevimab/cilgavimab). We first studied the association between baseline plasma sRAGE and 90-day clinical outcomes, which had been previously demonstrated in the bamlanivimab cohort, among hospitalized patients with COVID-19 supported with high flow nasal oxygen (HFNO) or non-invasive ventilation (NIV) in the tixagevimab/cilgavimab study. Next, we investigated the relationship between day 3 sRAGE and 90-day outcomes and how plasma sRAGE changes over the first 3 days of hospitalization in both clinical trial cohorts. We found that plasma sRAGE in the highest quartile in the HFNO/NIV participants in the tixagevimab/cilgavimab trial was associated with a significantly lower rate of 90-day sustained recovery (recovery rate ratio 0.31, 95% CI 0.14-0.71, p=0.005) and with a significantly higher rate of 90-day mortality (HR 2.49, 95% CI 1.15-5.43, p = 0.021) compared with the lower three quartiles. Day 3 plasma sRAGE in both clinical trial cohorts remained associated with 90-day clinical outcomes. The trajectory of sRAGE was not influenced by treatment assignment. Our results indicate that plasma sRAGE is a valuable prognostic marker in COVID-19 up to three days after initial hospital presentation.

5.
Curr Issues Mol Biol ; 46(1): 729-740, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38248349

RESUMEN

Chronic sinusitis (CS) is characterized by sinonasal inflammation, mucus overproduction, and edematous mucosal tissue. CS impacts one in seven adults and estimates suggest up to 15% of the general U.S. population may be affected. This research sought to assess a potential role for receptors for advanced glycation end-products (RAGE), an inflammatory receptor expressed in tissues exposed to secondhand smoke (SHS). Human sinus tissue sections were stained for RAGE and S100s, common RAGE ligands. Wild-type mice and mice that over-express RAGE in sinonasal epithelium (RAGE TG) were maintained in room air (RA) or exposed to secondhand smoke (SHS) via a nose-only delivery system five days a week for 6 weeks. Mouse sections were stained for RAGE and tissue lysates were assayed for cleaved caspase 3, cytokines, or matrix metalloproteases. We discovered increased RAGE expression in sinus tissue following SHS exposure and in sinuses from RAGE TG mice in the absence of SHS. Cleaved caspase-3, cytokines (IL-1ß, IL-3, and TNF-α), and MMPs (-9 and -13) were induced by SHS and in tissues from RAGE TG mice. These results expand the inflammatory role of RAGE signaling, a key axis in disease progression observed in smokers. In this relatively unexplored area, enhanced understanding of RAGE signaling during voluntary and involuntary smoking may help to elucidate potential therapeutic targets that may attenuate the progression of smoke-related CS.

6.
Eur J Neurosci ; 59(10): 2628-2645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491850

RESUMEN

Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.


Asunto(s)
Forminas , Transducción de Señal , Humanos , Animales , Forminas/metabolismo , Transducción de Señal/fisiología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Complicaciones de la Diabetes/metabolismo , Neuropatías Diabéticas/metabolismo
7.
Apoptosis ; 29(5-6): 849-864, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38117373

RESUMEN

Sarcopenia manifests as muscle atrophy and loss that is complicated with malignancy. This study explored the mechanism of extracellular vesicles (EVs) in multiple myeloma (MM) with sarcopenia. SP2/0 conditioned medium (CM) was collected to isolate SP2/0-EVs. C2C12 cells were incubated with SP2/0 CM or SP2/0-EVs. ROS, TNF-α, IL-6, MuRF1 and MyHC levels were detected by DCF-DA fluorescent probe, ELISA, and Western blot. GW4869 was used to inhibit EV secretion in SP2/0 to confirm its effect on muscle atrophy. Serum was collected from MM patients with or without sarcopenia to detect RAGE mRNA expression. SP2/0 cells were transfected with RAGE siRNA and C2C12 cells were treated with the isolated si-RAGE-EVs or/and TLR4 agonist. SP2/0 tumor-bearing mouse model was established. Healthy mice and SP2/0-tumor bearing mice were treated with SP2/0-EVs or si-RAGE-EVs. SP2/0 CM or SP2/0-EVs stimulated ROS, inflammatory responses, and myotube atrophy in C2C12 cells. GW4869 blocked EV secretion and the effects of SP2/0 CM. RAGE mRNA expression in serum EVs was increased in MM&Sarcopenia patients and RAGE knockdown in SP2/0-EVs partially nullified SP2/0-EVs' effects. SP2/0-EVs activated the TLR4/NF-κB p65 pathway by translocating RAGE. SP2/0-EVs-derived RAGE elevated ROS production, inflammation, and myotube atrophy in C2C12 cells and caused muscle loss in SP2/0 tumor-bearing mice by activating the TLR4/NF-κB p65 pathway. SP2/0-EVs partially recapitulated muscle loss in healthy mice. SP2/0-EVs-derived RAGE increased ROS production, inflammation, and myotube atrophy in MM through TLR4/NF-κB p65 pathway activation.


Asunto(s)
Vesículas Extracelulares , Inflamación , Mieloma Múltiple , Atrofia Muscular , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Receptor Toll-Like 4 , Factor de Transcripción ReIA , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Ratones , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/genética , Línea Celular Tumoral , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Masculino , Femenino
8.
Clin Immunol ; 262: 110178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460892

RESUMEN

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Benzamidas/farmacología
9.
Biol Chem ; 405(3): 167-176, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37768929

RESUMEN

Patients with acute myocardial infarction complicated with diabetes are more likely to develop myocardial ischemia/reperfusion (I/R) injury (MI/RI) during reperfusion therapy. Both HMGB1 and RAGE play important roles in MI/RI. However, the specific mechanisms of HMGB1 associated with RAGE are not fully clarified in diabetic MI/RI. This study aimed to investigate whether the HMGB1-RAGE axis induces diabetic MI/RI via regulating autophagy and apoptosis. A db/db mouse model of MI/RI was established, where anti-HMGB1 antibody and RAGE inhibitor (FPS-ZM1) were respectively injected after 10 min of reperfusion. The results showed that treatment with anti-HMGB1 significantly reduced the infarct size, serum LDH, and CK-MB level. Similar situations also occurred in mice administrated with FPS-ZM1, though the HMGB1 level was unchanged. Then, we found that treatment with anti-HMGB1 or FPS-ZM1 performed the same effects in suppressing the autophagy and apoptosis, as reflected by the results of lower LAMP2 and LC3B levels, increased Bcl-2 level, reduced BAX and caspase-3 levels. Moreover, the Pink1/Parkin levels were also inhibited at the same time. Collectively, this study indicates that the HMGB1-RAGE axis aggravated diabetic MI/RI via apoptosis and Pink1/Parkin mediated autophagy pathways, and inhibition of HMGB1 or RAGE contributes to alleviating those adverse situations.


Asunto(s)
Benzamidas , Diabetes Mellitus Experimental , Proteína HMGB1 , Daño por Reperfusión Miocárdica , Animales , Ratones , Apoptosis , Autofagia , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Proteína HMGB1/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
J Transl Med ; 22(1): 666, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020346

RESUMEN

BACKGROUND: The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS: In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS: Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS: Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.


Asunto(s)
Proteómica , Recuperación de la Función , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo
11.
Magn Reson Med ; 91(4): 1608-1624, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102807

RESUMEN

PURPOSE: MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS: A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS: The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION: The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
12.
NMR Biomed ; 37(1): e5041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37771076

RESUMEN

This article proposes a numerical framework to determine the optimal magnetization preparation in a three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence to obtain the best achievable contrast between target tissues based on differences in their relaxation times. The benefit lies in the adaptation of the algorithm of optimal control, GRAdient Ascent Pulse Engineering (GRAPE), to the optimization of magnetization preparation in a cyclic sequence without full recovery between each cycle. This numerical approach optimizes magnetization preparation of an arbitrary number of radio frequency pulses to enhance contrast, taking into account the establishment of a steady state in the longitudinal component of the magnetization. The optimal control preparation offers an optimized mixed T 1 / T 2 contrast in this traditional T 1 -weighted sequence. To show the versatility of the proposed method, numerical and in vitro results are described. Examples of contrasts acquired on brain regions of a healthy volunteer are presented for potential applications at 3 T.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos
13.
Cytokine ; 180: 156665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823153

RESUMEN

BACKGROUND: AGEs, their receptor (RAGE), and the extracellular newly identified receptor for AGEs product-binding protein (EN-RAGE) are implicated in the pathogenesis of inflammation. AIM: We analyzed serum EN-RAGE, soluble RAGE (sRAGE), and their isoforms: endogenous secretory - esRAGE and cleaved - cRAGE concentrations in lean controls (n = 74) and in patients with obesity (n = 71) treated for three weeks with moderate calorie restriction (CR) combined with physical activity in a hospital condition. METHODS: Using the ELISA method, serum sRAGE, esRAGE, and EN-RAGE were measured before and after CR. RESULTS: The serum level of sRAGE and esRAGE in patients with obesity was lower than that in non-obese individuals, contrary to cRAGE. EN-RAGE concentration was about three times higher in obese patients. Gradually, a rise in BMI resulted in sRAGE, esRAGE reduction, and EN-RAGE increase. The sRAGE concentration was sex-dependent, indicating a higher value in lean men. A moderate negative correlation was observed between BMI and all RAGE isoforms, whereas EN-RAGE displays a positive correlation. CR resulted in an expected decrease in anthropometric, metabolic, and proinflammatory parameters and EN-RAGE, but no RAGE isoforms. The ratio EN-RAGE/sRAGE was higher in obese humans than in control and was not modified by CR. CONCLUSION: Obesity decreases sRAGE and esRAGE and increases EN-RAGE concentration. Moderate CR and physical activity by decreasing inflammation reduces EN-RAGE but is insufficient to increase sRAGE and esRAGE to the extent observed in lean patients. EN-RAGE instead of sRAGE could be helpful to indicate a better outcome of moderate dietary intervention in obese subjects.


Asunto(s)
Restricción Calórica , Obesidad , Isoformas de Proteínas , Receptor para Productos Finales de Glicación Avanzada , Humanos , Restricción Calórica/métodos , Masculino , Obesidad/sangre , Obesidad/dietoterapia , Obesidad/terapia , Femenino , Receptor para Productos Finales de Glicación Avanzada/sangre , Adulto , Persona de Mediana Edad , Isoformas de Proteínas/sangre , Índice de Masa Corporal , Ejercicio Físico/fisiología , Receptores Inmunológicos/sangre , Actividad Motora/fisiología , Antígenos de Neoplasias , Proteínas Quinasas Activadas por Mitógenos
14.
Cytokine ; 180: 156635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749277

RESUMEN

BACKGROUND: Knee osteoarthritis (KOA) is a chronic progressive osteoarthropathy. Chrysin's anti-KOA action has been demonstrated, however more research is needed to understand how chrysin contributes to KOA. METHODS: LPS/ATP-induced macrophages transfected with or without HMGB1 overexpression underwent 5 µg/mL chrysin. The cell viability and macrophage pyroptosis were examined by cell counting kit-8 and flow cytometer. In vivo experiments, rats were injected with 1 mg monosodium iodoacetate by the infrapatellar ligament of the bilateral knee joint to induce KOA. The histological damage was analyzed by Safranin O/Fast Green staining and hematoxylin and eosin staining. The PWT, PWL and inflammatory factors were analyzed via Von-Frey filaments, thermal radiometer and ELISA. Immunofluorescence assay examined the expressions of CGRP and iNOS. The levels of HMGB1/RAGE-, NLRP3-, PI3K/AKT- and neuronal ion channel-related markers were examined by qPCR and western blot. RESULTS: Chrysin alleviated macrophage pyroptosis by inhibiting HMGB1 and the repression of chrysin on HMGB1/RAGE pathway and ion channel activation was reversed by overexpressed HMGB1. HMGB1 facilitated neuronal ion channel activation through the RAGE/PI3K/AKT pathway. Chrysin could improve the pathological injury of knee joints in KOA rats. Chrysin suppressed the HMGB1-regulated RAGE/PI3K/AKT pathway, hence reducing KOA damage and peripheral sensitization. CONCLUSION: Chrysin mitigated neuropathic pain and peripheral sensitization in KOA rats by repressing the RAGE/PI3K/AKT pathway modulated by HMGB1.


Asunto(s)
Flavonoides , Proteína HMGB1 , Neuralgia , Osteoartritis de la Rodilla , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/patología , Flavonoides/farmacología , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Piroptosis/efectos de los fármacos
15.
Cytokine ; 179: 156616, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38626647

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory disease induced by TNF-α, which increases fibroblast-like synoviocytes inflammation, resulting in cartilage destruction. The current work sought to comprehend the pathophysiological importance of TNF-α stimulation on differential protein expression and their regulation by apigenin using in-vitro and in-vivo models of RA. METHODS: The human RA synovial fibroblast cells were stimulated with or without TNF-α (10 ng/ml) and treated with 40 µM apigenin. In-silico, in-vitro and in-vivo studies were performed to confirm the pathophysiological significance of apigenin on pro-inflammatory cytokines and on differential expression of TTR and RAGE proteins. RESULTS: TNF-α induced inflammatory response in synoviocytes revealed higher levels of IL-6, IL-1ß, and TNF-α cytokines and upregulated differential expression of TTR and RAGE. In-silico results demonstrated that apigenin has a binding affinity towards TNF-α, indicating its potential effect in the inflammatory process. Both in-vitro and in-vivo results obtained by Western Blot analysis suggested that apigenin reduced the level of p65 (p = 0.005), TTR (p = 0.002), and RAGE (p = 0.020). CONCLUSION: The findings of this study suggested that TNF-α promotes the differential expression of pro-inflammatory cytokines, TTR, and RAGE via NF-kB pathways activation. Anti-inflammatory effect of apigenin impedes TNF-α mediated dysregulation or expression associated with RA pathogenesis.


Asunto(s)
Apigenina , Artritis Reumatoide , Receptor para Productos Finales de Glicación Avanzada , Factor de Necrosis Tumoral alfa , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Apigenina/farmacología , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología , Citocinas/metabolismo , Animales , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
16.
Respir Res ; 25(1): 93, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378600

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.


Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , Pulmón/metabolismo , MicroARNs/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo
17.
Chemistry ; 30(20): e202303255, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317623

RESUMEN

RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.


Asunto(s)
Transducción de Señal , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/metabolismo
18.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280562

RESUMEN

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Asunto(s)
Diabetes Mellitus Tipo 2 , Deficiencia de Vitamina D , Humanos , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/epidemiología , Estudios Transversales , Vitamina D/uso terapéutico , Vitaminas , Suplementos Dietéticos , Estudios Observacionales como Asunto
19.
BMC Cancer ; 24(1): 472, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622523

RESUMEN

BACKGROUND: Prostate cancer (PCa) is becoming the most common malignancy in men worldwide. We investigated the effect of astragaloside IV combined with PESV on the gut microbiota and metabolite of PCa mice and the process of treating PCa. METHODS: Nude mice were genetically modified to develop tumors characteristic of PCa. The treatment of PCa mice involved the administration of a combination of astragaloside IV and peptides derived from scorpion venom (PESV). Feces were collected for both 16 S rDNA and metabolic analysis. Fecal supernatant was extracted and used for fecal transplantation in PCa mice. Tumor development was observed in both PCa mice and nude mice. Tumor histopathology was examined, and the expression of inflammatory factors and the AGE-RAGE axis in PCa tissues were analyzed. RESULTS: PCa mice treated with Astragaloside IV in combination with PESV showed a significant reduction in tumor volume and weight, and stabilization of gut microbiota and metabolites. At the Genus level, significant differences were observed in Porphyromonas, Corynebacterium, Arthromitus and Blautia, and the differential metabolites were PA16_016_0, Astragaloside+, Vitamin A acid, Nardosinone, a-Nortestoster, D-Pantethine, Hypoxanthine, Pregnenolone, cinnamic acid, Pyridoxa, Cirtruline and Xanthurenate. There was a correlation between gut microbiota and metabolites. After the fecal transplantation, tumor growth was effectively suppressed in the PCa mice. Notably, both the mRNA and protein levels of the receptor for advanced glycation end products (RAGE) were significantly decreased. Furthermore, the expression of inflammatory factors, namely NF-κB, TNF-α, and IL-6, in the tumor tissues was significantly attenuated. Conversely, upregulation of RAGE led to increased inflammation and reversed tumor growth in the mice. CONCLUSION: Astragaloside IV combined with PESV could treat PCa by intervening in gut microbiota composition and metabolite by targeting RAGE.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Hepáticas , Neoplasias de la Próstata , Saponinas , Triterpenos , Masculino , Humanos , Animales , Ratones , Ratones Desnudos , Receptor para Productos Finales de Glicación Avanzada , Neoplasias de la Próstata/tratamiento farmacológico , Homeostasis
20.
Exp Eye Res ; 238: 109727, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972749

RESUMEN

Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.


Asunto(s)
Dieta Alta en Grasa , Arteria Oftálmica , Enfermedades Vasculares , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/metabolismo , Obesidad , Arteria Oftálmica/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Enfermedades Vasculares/metabolismo , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA