Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nucl Cardiol ; 30(1): 62-73, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35484467

RESUMEN

BACKGROUND: Myocardial perfusion imaging by positron emission tomography (PET-MPI) is the current gold standard for quantification of myocardial blood flow. 18F-flurpiridaz was recently introduced as a valid alternative to currently used PET-MPI probes. Nonetheless, optimum scan duration and time interval for image analysis are currently unknown. Further, it is unclear whether rest/stress PET-MPI with 18F-flurpiridaz is feasible in mice. METHODS: Rest/stress PET-MPI was performed with 18F-flurpiridaz (0.6-3.0 MBq) in 27 mice aged 7-8 months. Regadenoson (0.1 µg/g) was used for induction of vasodilator stress. Kinetic modeling was performed using a metabolite-corrected arterial input function. Image-derived myocardial 18F-flurpiridaz uptake was assessed for different time intervals by placing a volume of interest in the left ventricular myocardium. RESULTS: Tracer kinetics were best described by a two-tissue compartment model. K1 ranged from 6.7 to 20.0 mL·cm-3·min-1, while myocardial volumes of distribution (VT) were between 34.6 and 83.6 mL·cm-3. Of note, myocardial 18F-flurpiridaz uptake (%ID/g) was significantly correlated with K1 at rest and following pharmacological vasodilation for all time intervals assessed. However, while Spearman's coefficients (rs) ranged between 0.478 and 0.681, R2 values were generally low. In contrast, an excellent correlation of myocardial 18F-flurpiridaz uptake with VT was obtained, particularly when employing the averaged myocardial uptake from 20 to 40 min post tracer injection (R2 ≥ 0.98). Notably, K1 and VT were similarly sensitive to pharmacological vasodilation induction. Further, mean stress-to-rest ratios of K1, VT, and %ID/g 18F-flurpiridaz were virtually identical, suggesting that %ID/g 18F-flurpiridaz can be used to estimate coronary flow reserve (CFR) in mice. CONCLUSION: Our findings suggest that a simplified assessment of relative myocardial perfusion and CFR, based on image-derived tracer uptake, is feasible with 18F-flurpiridaz in mice, enabling high-throughput mechanistic CFR studies in rodents.


Asunto(s)
Imagen de Perfusión Miocárdica , Ratones , Animales , Imagen de Perfusión Miocárdica/métodos , Estudios de Factibilidad , Tomografía de Emisión de Positrones/métodos , Miocardio , Procesamiento de Imagen Asistido por Computador
2.
Eur J Nucl Med Mol Imaging ; 49(7): 2209-2218, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35024889

RESUMEN

BACKGROUND: A growing body of evidence highlights sex differences in the diagnostic accuracy of cardiovascular imaging modalities. Nonetheless, the role of sex hormones in modulating myocardial perfusion and coronary flow reserve (CFR) is currently unclear. The aim of our study was to assess the impact of female and male sex hormones on myocardial perfusion and CFR. METHODS: Rest and stress myocardial perfusion imaging (MPI) was conducted by small animal positron emission tomography (PET) with [18F]flurpiridaz in a total of 56 mice (7-8 months old) including gonadectomized (Gx) and sham-operated males and females, respectively. Myocardial [18F]flurpiridaz uptake (% injected dose per mL, % ID/mL) was used as a surrogate for myocardial perfusion at rest and following intravenous regadenoson injection, as previously reported. Apparent coronary flow reserve (CFRApp) was calculated as the ratio of stress and rest myocardial perfusion. Left ventricular (LV) morphology and function were assessed by cardiac magnetic resonance (CMR) imaging. RESULTS: Orchiectomy resulted in a significant decrease of resting myocardial perfusion (Gx vs. sham, 19.4 ± 1.0 vs. 22.2 ± 0.7 % ID/mL, p = 0.034), while myocardial perfusion at stress remained unchanged (Gx vs. sham, 27.5 ± 1.2 vs. 27.3 ± 1.2 % ID/mL, p = 0.896). Accordingly, CFRApp was substantially higher in orchiectomized males (Gx vs. sham, 1.43 ± 0.04 vs. 1.23 ± 0.05, p = 0.004), and low serum testosterone levels were linked to a blunted resting myocardial perfusion (r = 0.438, p = 0.020) as well as an enhanced CFRApp (r = -0.500, p = 0.007). In contrast, oophorectomy did not affect myocardial perfusion in females. Of note, orchiectomized males showed a reduced LV mass, stroke volume, and left ventricular ejection fraction (LVEF) on CMR, while no such effects were observed in oophorectomized females. CONCLUSION: Our experimental data in mice indicate that sex differences in myocardial perfusion are primarily driven by testosterone. Given the diagnostic importance of PET-MPI in clinical routine, further studies are warranted to determine whether testosterone levels affect the interpretation of myocardial perfusion findings in patients.


Asunto(s)
Enfermedad de la Arteria Coronaria , Imagen de Perfusión Miocárdica , Animales , Femenino , Hormonas Esteroides Gonadales , Humanos , Masculino , Ratones , Imagen de Perfusión Miocárdica/métodos , Perfusión , Tomografía de Emisión de Positrones/métodos , Volumen Sistólico , Testosterona , Tomografía Computarizada por Rayos X , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA