Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17461, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39199008

RESUMEN

Monitoring agriculture by remote sensing enables large-scale evaluation of biomass production across space and time. The normalized difference vegetation index (NDVI) is used as a proxy for green biomass. Here, we used satellite-derived NDVI of arable farms in the Netherlands to evaluate changes in biomass following conversion from conventional to organic farming. We compared NDVI and the stability of NDVI across 72 fields on sand and marine clay soils. Thirty-six of these fields had been converted into organic agriculture between 0 and 50 years ago (with 2017 as reference year), while the other 36 were paired control fields where conventional farming continued. We used high-resolution images from the Sentinel-2 satellite to obtain NDVI estimates across 5 years (January 2016-October 2020). Overall, NDVI did not differ between conventional and organic management during the time series, but NDVI stability was significantly higher under organic management. NDVI was lower under organic management in sandy, but not in clay, soils. Organic farms that had been converted less than ~19 years ago had lower NDVI than conventional farms. However, the difference diminished over time and eventually turned positive after ~19 years since the conversion. NDVI, averaged across the 5 years of study, was positively correlated to soil Olsen-P measured from soil samples collected in 2017. We conclude that NDVI in organic fields was more stable than in conventional fields, and that the lower biomass in the early years since the transition to organic agriculture can be overcome with time. Our study also indicates the role of soil P bioavailability for plant biomass production across the examined fields, and the benefit of combining remote sensing with on-site soil measurements to develop a more mechanistic understanding that may help us navigate the transition to a more sustainable type of agriculture.


Asunto(s)
Agricultura , Biomasa , Agricultura Orgánica , Suelo , Países Bajos , Suelo/química , Agricultura Orgánica/métodos , Agricultura/métodos , Tecnología de Sensores Remotos
2.
Glob Chang Biol ; 30(5): e17315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721865

RESUMEN

Grasslands provide important ecosystem services to society, including biodiversity, water security, erosion control, and forage production. Grasslands are also vulnerable to droughts, rendering their future vitality under climate change uncertain. Yet, the grassland response to drought is not well understood, especially for heterogeneous Central European grasslands. We here fill this gap by quantifying the spatiotemporal sensitivity of grasslands to drought using a novel remote sensing dataset from Landsat/Sentinel-2 paired with climate re-analysis data. Specifically, we quantified annual grassland vitality at fine spatial scale and national extent (Germany) from 1985 to 2021. We analyzed grassland sensitivity to drought by testing for statistically robust links between grassland vitality and common drought indices. We furthermore explored the spatiotemporal variability of drought sensitivity for 12 grassland habitat types given their different biotic and abiotic features. Grassland vitality maps revealed a large-scale reduction of grassland vitality during past droughts. The unprecedented drought of 2018-2019 stood out as the largest multi-year vitality decline since the mid-1980s. Grassland vitality was consistently coupled to drought (R2 = .09-.22) with Vapor Pressure Deficit explaining vitality best. This suggests that high atmospheric water demand, as observed during recent compounding drought and heatwave events, has major impacts on grassland vitality in Central Europe. We found a significant increase in drought sensitivity over time with highest sensitivities detected in periods of extremely high atmospheric water demand, suggesting that drought impacts on grasslands are becoming more severe with ongoing climate change. The spatial variability of grassland drought sensitivity was linked to different habitat types, with declining sensitivity from dry and mesic to wet habitats. Our study provides the first large-scale, long-term, and spatially explicit evidence of increasing drought sensitivities of Central European grasslands. With rising compound droughts and heatwaves under climate change, large-scale grassland vitality loss, as in 2018-2019, will thus become more likely in the future.


Asunto(s)
Cambio Climático , Sequías , Pradera , Tecnología de Sensores Remotos , Alemania , Agua/análisis , Atmósfera
3.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619088

RESUMEN

Fires are a major contributor to atmospheric budgets of greenhouse gases and aerosols, affect soils and vegetation properties, and are a key driver of land use change. Since the 1990s, global burned area (BA) estimates based on satellite observations have provided critical insights into patterns and trends of fire occurrence. However, these global BA products are based on coarse spatial-resolution sensors, which are unsuitable for detecting small fires that burn only a fraction of a satellite pixel. We estimated the relevance of those small fires by comparing a BA product generated from Sentinel-2 MSI (Multispectral Instrument) images (20-m spatial resolution) with a widely used global BA product based on Moderate Resolution Imaging Spectroradiometer (MODIS) images (500 m) focusing on sub-Saharan Africa. For the year 2016, we detected 80% more BA with Sentinel-2 images than with the MODIS product. This difference was predominately related to small fires: we observed that 2.02 Mkm2 (out of a total of 4.89 Mkm2) was burned by fires smaller than 100 ha, whereas the MODIS product only detected 0.13 million km2 BA in that fire-size class. This increase in BA subsequently resulted in increased estimates of fire emissions; we computed 31 to 101% more fire carbon emissions than current estimates based on MODIS products. We conclude that small fires are a critical driver of BA in sub-Saharan Africa and that including those small fires in emission estimates raises the contribution of biomass burning to global burdens of (greenhouse) gases and aerosols.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , Imágenes Satelitales , Incendios Forestales , África , Monitoreo del Ambiente/métodos , Incendios , Estaciones del Año
4.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38544155

RESUMEN

As satellite launching increases worldwide, uncertainty quantification for satellite data becomes essential. Misunderstanding satellite data uncertainties can lead to misinterpretations of natural phenomena, emphasizing the importance of validation. In this study, we established a tower-based network equipped with multispectral sensors, SD-500 and SD-600, to validate the satellite-derived NDVI product. Multispectral sensors were installed at eight long-term ecological monitoring sites managed by NIFoS. High correlations were observed between both multispectral sensors and a hyperspectral sensor, with correlations of 0.76 and 0.92, respectively, indicating that the calibration between SD-500 and SD-600 was unnecessary. High correlations, 0.8 to 0.96, between the tower-based NDVI with Sentinel-2 NDVI, were observed at most sites, while lower correlations at Anmyeon-do, Jeju, and Wando highlighting challenges in evergreen forests, likely due to shadows in complex canopy structures. In future research, we aim to analyze the uncertainties of surface reflectance in evergreen forests and develop a biome-specific validation protocol starting from site selection. Especially, the integration of tower, drone, and satellite data is expected to provide insights into the effect of complex forest structures on different spatial scales. This study could offer insights for CAS500-4 and other satellite validations, thereby enhancing our understanding of diverse ecological conditions.

5.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339521

RESUMEN

Rice (Oryza sativa L.) is a staple cereal in the diet of more than half of the world's population. Within the European Union, Spain is a leader in rice production due to its climate and tradition, accounting for 26% of total EU production in 2020. The Valencian rice area covers around 15,000 hectares and is strongly influenced by biotic and abiotic factors. An important biotic factor affecting rice production is weeds, which compete with rice for sunlight, water and nutrients. The dominant weed in Spain is Echinochloa spp., although wild rice is becoming increasingly important. Rice cultivation in Valencia takes place in the area of L'Albufera de Valencia, which is a natural park, i.e., a special protection area. In this natural area, the use of phytosanitary products is limited, so it is necessary to use the minimum amount possible. Therefore, the objective of this work is to evaluate the possibility of using remote sensing effectively to determine the effectiveness of the application of the herbicide cyhalofop-butyl by drone for the control of Echinochloa spp. in rice crops in Valencia. The results will be compared with those obtained by using sterilisation machines (electric backpack sprayers) to apply the herbicide. To evaluate the effectiveness of the application, the reflectance obtained by the satellite sensors in the red and near infrared (NIR) wavelengths, as well as the normalised difference vegetation index (NDVI), were used. The remote sensing results were analysed and complemented by the number of rice plants and weeds per area, plant dry weight, leaf area, BBCH phenological state, SPAD index values, chlorophyll content and relative growth rate. Remote sensing is validated as an effective tool for determining the efficacy of an herbicide in controlling weeds applied by both the drone and the electric backpack sprayer. The weeds slowed down their development after the treatment. Depending on the phenological state of the crop and the active ingredient of the herbicide, these results are applicable to other areas with different climatic and environmental conditions.


Asunto(s)
Echinochloa , Herbicidas , Oryza , Herbicidas/farmacología , España , Tecnología de Sensores Remotos , Dispositivos Aéreos No Tripulados , Malezas
6.
Sensors (Basel) ; 24(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204783

RESUMEN

Ocean plastic pollution is one of the global environmental problems of our time. "Rubbish islands" formed in the ocean are increasing every year, damaging the marine ecosystem. In order to effectively address this type of pollution, it is necessary to accurately and quickly identify the sources of plastic entering the ocean, identify where it is accumulating, and track the dynamics of waste movement. To this end, remote sensing methods using satellite imagery and aerial photographs from unmanned aerial vehicles are a reliable source of data. Modern machine learning technologies make it possible to automate the detection of floating plastics. This review presents the main projects and research aimed at solving the "plastic" problem. The main data acquisition techniques and the most effective deep learning algorithms are described, various limitations of working with space images are analyzed, and ways to eliminate such shortcomings are proposed.

7.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065883

RESUMEN

Spores from the fungus Pithomyces chartarum are commonly found on Azorean pastures. When consumed by cattle along with the grass, these spores cause health issues in the cattle, resulting in animal suffering and financial losses. For approximately two years, we monitored meteorological parameters using weather stations and collected and analyzed grass samples in a laboratory to control for the presence of spores. The data confirmed a connection between meteorology and sporulation, enabling the prediction of sporulation risk. To detect the presence of spores in pastures rather than predict it, we employed field spectrometry and Sentinel-2 reflectance data to measure the spectral signatures of grass while controlling for spores. Our findings indicate that meteorological variables from the past 90 days can be used to predict sporulation, which can enhance the accuracy of a web-based alert system used by farmers to manage the risk. We did not detect significant differences in spectral signatures between grass with and without spores. These studies contribute to a deeper understanding of P. chartarum sporulation and provide actionable information for managing cattle, ultimately improving animal welfare and reducing financial losses.


Asunto(s)
Tecnología de Sensores Remotos , Esporas Fúngicas , Animales , Bovinos , Tecnología de Sensores Remotos/métodos , Esporas Fúngicas/aislamiento & purificación , Poaceae/microbiología , Azores , Internet de las Cosas
8.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544016

RESUMEN

Multispectral and 3D LiDAR remote sensing data sources are valuable tools for characterizing the 3D vegetation structure and thus understanding the relationship between forest structure, biodiversity, and microclimate. This study focuses on mapping riparian forest species in the canopy strata using a fusion of Airborne LiDAR data and multispectral multi-source and multi-resolution satellite imagery: Sentinel-2 and Pleiades at tree level. The idea is to assess the contribution of each data source in the tree species classification at the considered level. The data fusion was processed at the feature level and the decision level. At the feature level, LiDAR 2D attributes were derived and combined with multispectral imagery vegetation indices. At the decision level, LiDAR data were used for 3D tree crown delimitation, providing unique trees or groups of trees. The segmented tree crowns were used as a support for an object-based species classification at tree level. Data augmentation techniques were used to improve the training process, and classification was carried out with a random forest classifier. The workflow was entirely automated using a Python script, which allowed the assessment of four different fusion configurations. The best results were obtained by the fusion of Sentinel-2 time series and LiDAR data with a kappa of 0.66, thanks to red edge-based indices that better discriminate vegetation species and the temporal resolution of Sentinel-2 images that allows monitoring the phenological stages, helping to discriminate the species.

9.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931586

RESUMEN

Bathymetry estimation is essential for various applications in port management, navigation safety, marine engineering, and environmental monitoring. Satellite remote sensing data can rapidly acquire the bathymetry of the target shallow waters, and researchers have developed various models to invert the water depth from the satellite data. Geographically weighted regression (GWR) is a common method for satellite-based bathymetry estimation. However, in sediment-laden water environments, especially ports, the suspended materials significantly affect the performance of GWR for depth inversion. This study proposes a novel approach that integrates GWR with Random Forest (RF) techniques, using longitude, latitude, and multispectral remote sensing reflectance as input variables. This approach effectively addresses the challenge of estimating bathymetry in turbid waters by considering the strong correlation between water depth and geographical location. The proposed method not only overcomes the limitations of turbid waters but also improves the accuracy of depth inversion results in such complex aquatic settings. This breakthrough in modeling has significant implications for turbid waters, enhancing port management, navigational safety, and environmental monitoring in sediment-laden maritime zones.

10.
Sensors (Basel) ; 24(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38339552

RESUMEN

Grasslands cover a substantial portion of the earth's surface and agricultural land and is crucial for human well-being and livestock farming. Ranchers and grassland management authorities face challenges in effectively controlling herders' grazing behavior and grassland utilization due to underdeveloped infrastructure and poor communication in pastoral areas. Cloud-based grazing management and decision support systems (DSS) are needed to address this issue, promote sustainable grassland use, and preserve their ecosystem services. These systems should enable rapid and large-scale grassland growth and utilization monitoring, providing a basis for decision-making in managing grazing and grassland areas. In this context, this study contributes to the objectives of the EU LIFE IMAGINE project, aiming to develop a Web-GIS app for conserving and monitoring Umbria's grasslands and promoting more informed decisions for more sustainable livestock management. The app, called "Praterie" and developed in Google Earth Engine, utilizes historical Sentinel-2 satellite data and harmonic modeling of the EVI (Enhanced Vegetation Index) to estimate vegetation growth curves and maturity periods for the forthcoming vegetation cycle. The app is updated in quasi-real time and enables users to visualize estimates for the upcoming vegetation cycle, including the maximum greenness, the days remaining to the subsequent maturity period, the accuracy of the harmonic models, and the grassland greenness status in the previous 10 days. Even though future additional developments can improve the informative value of the Praterie app, this platform can contribute to optimizing livestock management and biodiversity conservation by providing timely and accurate data about grassland status and growth curves.


Asunto(s)
Ecosistema , Pradera , Animales , Humanos , Motor de Búsqueda , Biodiversidad , Agricultura , Ganado
11.
Sensors (Basel) ; 24(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204916

RESUMEN

Accurately extracting large-scale offshore floating raft aquaculture (FRA) areas is crucial for supporting scientific planning and precise aquaculture management. While remote sensing technology offers advantages such as wide coverage, rapid imaging, and multispectral capabilities for FRA monitoring, the current methods face challenges in terms of establishing spatial-spectral correlations and extracting multiscale features, thereby limiting their accuracy. To address these issues, we propose an innovative multiscale spatial-spectral fusion network (MSSFNet) designed specifically for extracting offshore FRA areas from multispectral remote sensing imagery. MSSFNet effectively integrates spectral and spatial information through a spatial-spectral feature extraction block (SSFEB), significantly enhancing the accuracy of FRA area identification. Additionally, a multiscale spatial attention block (MSAB) captures contextual information across different scales, improving the ability to detect FRA areas of varying sizes and shapes while minimizing edge artifacts. We created the CHN-YE7-FRA dataset using Sentinel-2 multispectral remote sensing imagery and conducted extensive evaluations. The results showed that MSSFNet achieved impressive metrics: an F1 score of 90.76%, an intersection over union (IoU) of 83.08%, and a kappa coefficient of 89.75%, surpassing those of state-of-the-art methods. The ablation results confirmed that the SSFEB and MSAB modules effectively enhanced the FRA extraction accuracy. Furthermore, the successful practical applications of MSSFNet validated its generalizability and robustness across diverse marine environments. These findings highlight the performance of MSSFNet in both experimental and real-world scenarios, providing reliable, precise FRA area monitoring. This capability provides crucial data for scientific planning and environmental protection purposes in coastal aquaculture zones.

12.
Sensors (Basel) ; 24(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39275738

RESUMEN

The paper demonstrates the effectiveness of the SNOWED dataset, specifically designed for identifying water bodies in Sentinel-2 images, in developing a remote sensing system based on deep neural networks. For this purpose, a system is implemented for monitoring the Po River, Italy's most important watercourse. By leveraging the SNOWED dataset, a simple U-Net neural model is trained to segment satellite images and distinguish, in general, water and land regions. After verifying its performance in segmenting the SNOWED validation set, the trained neural network is employed to measure the area of water regions along the Po River, a task that involves segmenting a large number of images that are quite different from those in SNOWED. It is clearly shown that SNOWED-based water area measurements describe the river status, in terms of flood or drought periods, with a surprisingly good accordance with water level measurements provided by 23 in situ gauge stations (official measurements managed by the Interregional Agency for the Po). Consequently, the sensing system is used to take measurements at 100 "virtual" gauge stations along the Po River, over the 10-year period (2015-2024) covered by the Sentinel-2 satellites of the Copernicus Programme. In this way, an overall space-time monitoring of the Po River is obtained, with a spatial resolution unattainable, in a cost-effective way, by local physical sensors. Altogether, the obtained results demonstrate not only the usefulness of the SNOWED dataset for deep learning-based satellite sensing, but also the ability of such sensing systems to effectively complement traditional in situ sensing stations, providing precious tools for environmental monitoring, especially of locations difficult to reach, and permitting the reconstruction of historical data related to floods and draughts. Although physical monitoring stations are designed for rapid monitoring and prevention of flood or other disasters, the developed tool for remote sensing of water bodies could help decision makers to define long-term policies to reduce specific risks in areas not covered by physical monitoring or to define medium- to long-term strategies such as dam construction or infrastructure design.

13.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123972

RESUMEN

This study introduces an orbital monitoring system designed to quantify non-technical losses (NTLs) within electricity distribution networks. Leveraging Sentinel-2 satellite imagery alongside advanced techniques in computer vision and machine learning, this system focuses on accurately segmenting urban areas, facilitating the removal of clouds, and utilizing OpenStreetMap masks for pre-annotation. Through testing on two datasets, the method attained a Jaccard index (IoU) of 0.9210 on the training set, derived from the region of France, and 0.88 on the test set, obtained from the region of Brazil, underscoring its efficacy and resilience. The precise segmentation of urban zones enables the identification of areas beyond the electric distribution company's coverage, thereby highlighting potential irregularities with heightened reliability. This approach holds promise for mitigating NTL, particularly through its ability to pinpoint potential irregular areas.

14.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066085

RESUMEN

Satellite remote sensing is currently an established, effective, and constantly used tool and methodology for monitoring agriculture and fertilisation. At the same time, in recent years, the need for the detection of livestock manure and digestate spreading on the soil is emerging, and the development of spectral indices and classification processes based on satellite multispectral data acquisitions is growing. However, the application of such indicators is still underutilised and, given the polluting impact of livestock manure and digestate on soil, groundwater, and air, an in-depth study is needed to improve the monitoring of this practice. Additionally, this paper aims at exposing a new spectral index capable of detecting the land affected by livestock manure and digestate spreading. This indicator was created by studying the spectral response of bare soil and livestock manure and digestate, using Copernicus Sentinel-2 MSI satellite acquisitions and ancillary datasets (e.g., soil moisture, precipitation, regional thematic maps). In particular, time series of multispectral satellite acquisitions and ancillary data were analysed, covering a survey period of 13 months between February 2022 and February 2023. As no previous indications on fertilisation practices are available, the proposed approach consists of investigating a broad-spectrum area, without investigations of specific test sites. A large area of approximately 236,344 hectares covering three provinces of the Emilia-Romagna Region (Italy) was therefore examined. A series of ground truth points were also collected for assessing accuracy by filling in the confusion matrix. Based on the definition of the spectral index, a value of the latter greater than three provides the most conservative threshold for detecting livestock manure and digestate spreading with an accuracy of 62.53%. Such results are robust to variations in the spectral response of the soil. On the basis of these very encouraging results, it is considered plausible that the proposed index could improve the techniques for detecting the spreading of livestock manure and digestate on bare ground, classifying the areas themselves with a notable saving of energy compared to the current investigation methodologies directly on the ground.

15.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894197

RESUMEN

Spatialization and analysis of the gross domestic product of second and tertiary industries (GDP23) can effectively depict the socioeconomic status of regional development. However, existing studies mainly conduct GDP spatialization using nighttime light data; few studies specifically concentrated on the spatialization and analysis of GDP23 in a built-up area by combining multi-source remote sensing images. In this study, the NPP-VIIRS-like dataset and Sentinel-2 multi-spectral remote sensing images in six years were combined to precisely spatialize and analyze the variation patterns of the GDP23 in the built-up area of Zibo city, China. Sentinel-2 images and the random forest (RF) classification method based on PIE-Engine cloud platform were employed to extract built-up areas, in which the NPP-VIIRS-like dataset and comprehensive nighttime light index were used to indicate the nighttime light magnitudes to construct models to spatialize GDP23 and analyze their change patterns during the study period. The results found that (1) the RF classification method can accurately extract the built-up area with an overall accuracy higher than 0.90; the change patterns of built-up areas varied among districts and counties, with Yiyuan county being the only administrative region with an annual expansion rate of more than 1%. (2) The comprehensive nighttime light index is a viable indicator of GDP23 in the built-up area; the fitted model exhibited an R2 value of 0.82, and the overall relative errors of simulated GDP23 and statistical GDP23 were below 1%. (3) The year 2018 marked a significant turning point in the trajectory of GDP23 development in the study area; in 2018, Zhoucun district had the largest decrease in GDP23 at -52.36%. (4) GDP23 gradation results found that Zhangdian district exhibited the highest proportion of high GDP23 (>9%), while the proportions of low GDP23 regions in the remaining seven districts and counties all exceeded 60%. The innovation of this study is that the GDP23 in built-up areas were first precisely spatialized and analyzed using the NPP-VIIRS-like dataset and Sentinel-2 images. The findings of this study can serve as references for formulating improved city planning strategies and sustainable development policies.

16.
J Environ Manage ; 355: 120334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428179

RESUMEN

Water clarity serves as both an indicator and a regulator of biological function in aquatic systems. Large-scale, consistent water clarity monitoring is needed for informed decision-making. Inland freshwater ponds and lakes across Cape Cod, a 100-km peninsula in Massachusetts, are of particular interest for water clarity monitoring. Secchi disk depth (SDD), a common measure of water clarity, has been measured intermittently for over 200 Cape Cod ponds since 2001. Field-measured SDD data were used to estimate SDD from satellite data, leveraging the NASA/USGS Landsat Program and Copernicus Sentinel-2 mission, spanning 1984 to 2022. Random forest machine learning models were generated to estimate SDD from satellite reflectance data and maximum pond depth. Spearman rank correlations (rs) were "strong" for Landsat 5 and 7 (rs = 0.78 and 0.79), and "very strong" for Landsat 8, 9, and Sentinel-2 (rs = 0.83, 0.86, and 0.80). Mean absolute error also indicated strong predictive capacity, ranging from 0.65 to 1.05 m, while average bias ranged from -0.20 to 0.06 m. Long- and recent short-term changes in satellite-estimated SDD were assessed for 193 ponds, selected based on surface area and the availability of maximum pond depth data. Long-term changes between 1984 and 2022 established a retrospective baseline using the Mann-Kendall test for trend and Theil-Sen slope. Generally, long-term water clarity improved across the Cape; 149 ponds indicated increasing water clarity, and 8 indicated deteriorating water clarity. Recent short-term changes between 2021 and 2022 identified ponds that may benefit from targeted management efforts using the Mann-Whitney U test. Between 2021 and 2022, 96 ponds indicated deteriorations in water clarity, and no ponds improved in water clarity. While the 193 ponds analyzed here constitute only one quarter of Cape Cod ponds, they represent 85% of its freshwater surface area, providing the most spatially and temporally comprehensive assessment of Cape Cod ponds to date. Efforts are focused on Cape Cod, but can be applied to other areas given the availability of local field data. This study defines a framework for monitoring and assessing change in satellite-estimated SDD, which is important for both local and regional management and resource prioritization.


Asunto(s)
Estanques , Imágenes Satelitales , Monitoreo del Ambiente , Agua , Estudios Retrospectivos , Calidad del Agua , Lagos , Massachusetts
17.
J Environ Manage ; 369: 122326, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217900

RESUMEN

Rapid flood impact assessment methods need complete and accurate flood maps to provide reliable information for disaster risk management, in particular for emergency response and recovery and reconstruction plans. With the aim of improving the rapid assessment of flood impacts, this work presents a new impact assessment method characterized by an enhanced satellite multi-sensor approach for flood mapping, which improves the characterization of the hazard. This includes a novel flood mapping method based on the new multi-temporal Modified Normalized Difference Water Index (MNDWI) that uses multi-temporal statistics computed on time-series of Sentinel-2 multi-spectral satellite images. The multi-temporal aspect of the MNDWI improves characterization of land cover over time and enhances the temporary flooded areas, which can be extracted through a thresholding technique, allowing the delineation of more precise and complete flood maps. The methodology, if implemented in cloud-based environments such as Google Earth Engine (GEE), is computationally light and robust, allowing the derivation of flood maps in matters of minutes, also for large areas. The flood mapping and impact assessment method has been applied to the seasonal flood occurred in South Sudan in 2020, using Sentinel-1, Sentinel-2 and PlanetScope satellite imagery. Flood impacts were assessed considering damages to buildings, roads, and cropland. The multi-sensor approach estimated an impact of 57.4 million USD (considering a middle-bound scenario), higher than what estimated by using Sentinel-1 data only, and Sentinel-2 data only (respectively 24% and 78% of the estimation resulting from the multi-sensor approach). This work highlights the effectiveness and importance of considering multi-source satellite data for flood mapping in a context of disaster risk management, to better inform disaster response, recovery and reconstruction plans.


Asunto(s)
Inundaciones , Imágenes Satelitales , Gestión de Riesgos/métodos
18.
J Environ Manage ; 364: 121462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878578

RESUMEN

The use of remote sensing for monitoring chlorophyll-a (chla) and modelling eutrophication has advanced over the last decades. Although the application of the technology has proven successful in ocean ecosystems, there is a need to monitor chla concentrations in large, nutrient-poor inland water bodies. The main objective of this study was to explore the utility of publicly available remotely sensed Sentinel-2 (S2) imagery to quantify chla concentrations in the nutrient-deficient Lake Malawi/Niassa/Nyasa (LMNN). A secondary objective was to compare the S2 derived chla with the Global Change Observation Mission-Climate (GCOM-C) chla product that provides uninterrupted data throughout the year. In situ chla data (n = 76) from upper, middle and lower sections of LMNN served as a reference to produce remote sensing-based quantification. The line-height approach method built on color index, was applied for chla concentrations below 0.25 mg/m3. Moderate Resolution Imaging Spectroradiometer 3-band Ocean Color (MODIS-OC3) - was adopted when chla concentration exceeded 0.35 mg/m3. The MODIS-OC3 algorithm had generic model coefficients that were calibrated for each in situ sample by using GCOM-C Level 3 chla product. A weighted sum of the two algorithms was applied for chla concentrations that fell between 0.25 and 0.35 mg/m3. The above methods were then applied to the S2 data to estimate chla at each pixel. S2 showed a promising accuracy in distinguishing chla levels (MSE = 0.18) although the chla range in the lake was relatively narrow, particularly using the locally calibrated coefficients of the OC3 algorithm. Chla distribution maps produced from the S2 data revealed limited spatial variation across the LMNN with higher concentrations identified in the coastal areas. S2-derived chla and GCOM-C chla comparison showed fairly good similarity between the two datasets (MSE = 0.205). Accepting this similarity, monthly chla dynamics of the lake was profiled using the temporally reliable GCOM-C data that showed oligotrophic conditions (1.7 mg/m3 to 3.2 mg/m3) in most parts of the lake throughout the year. The study's findings advance the potential for both remote sensing approaches to provide vital information at the required spatial and temporal resolution for evidence-based policymaking and proactive environmental management in an otherwise very data deficient region.


Asunto(s)
Clorofila A , Monitoreo del Ambiente , Lagos , Lagos/química , Monitoreo del Ambiente/métodos , Clorofila A/análisis , Tecnología de Sensores Remotos , Clorofila/análisis , Eutrofización , Malaui
19.
Environ Manage ; 74(4): 742-756, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39078521

RESUMEN

The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm's pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers' agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices.


Asunto(s)
Agricultura , Productos Agrícolas , Aprendizaje Automático , South Dakota , Productos Agrícolas/crecimiento & desarrollo , Agricultura/métodos , Glycine max/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Zea mays/crecimiento & desarrollo , Cambio Climático , Monitoreo del Ambiente/métodos
20.
Environ Monit Assess ; 196(6): 568, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775887

RESUMEN

In the context of environmental and social applications, the analysis of land use and land cover (LULC) holds immense significance. The growing accessibility of remote sensing (RS) data has led to the development of LULC benchmark datasets, especially pivotal for intricate image classification tasks. This study addresses the scarcity of such benchmark datasets across diverse settings, with a particular focus on the distinctive landscape of India. The study entails the creation of patch-based datasets, consisting of 4000 labelled images spanning four distinct LULC classes derived from Sentinel-2 satellite imagery. For the subsequent classification task, three traditional machine learning (ML) models and three convolutional neural networks (CNNs) were employed. Despite facing several challenges throughout the process of dataset generation and subsequent classification, the CNN models consistently attained an overall accuracy of 90% or more. Notably, one of the ML models stood out with 96% accuracy, surpassing CNNs in this specific context. The study also conducts a comparative analysis of ML models on existing benchmark datasets, revealing higher prediction accuracy when dealing with fewer LULC classes. Thus, the selection of an appropriate model hinges on the given task, available resources, and the necessary trade-offs between performance and efficiency, particularly crucial in resource-constrained settings. The standardized benchmark dataset contributes valuable insights into the relative performance of deep CNN and ML models in LULC classification, providing a comprehensive understanding of their strengths and weaknesses.


Asunto(s)
Aprendizaje Profundo , Monitoreo del Ambiente , Aprendizaje Automático , India , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos , Imágenes Satelitales , Redes Neurales de la Computación , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA