Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Autophagy ; 19(4): 1221-1238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36048765

RESUMEN

Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.


Asunto(s)
Antineoplásicos , Biflavonoides , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Autofagia/fisiología , Biflavonoides/farmacología , Biflavonoides/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/farmacología , Quinasa 6 Dependiente de la Ciclina/uso terapéutico , Transportador de Glucosa de Tipo 1/genética , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Proliferación Celular , Línea Celular Tumoral , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
J Cancer ; 13(7): 2352-2361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517408

RESUMEN

Lung cancer is acknowledged as a common cancer with high morbidity and mortality. MicroRNAs (miRNAs), kind of non-coding single-stranded RNA molecules, can be used in cancer clinical treatments. In this research, miR-199a-5p was seen lowly expressed in NSCLC sera samples. miR-199a-5p suppressed the cell proliferation, migration and arrested cell cycle in NSCLC cell lines. The results showed that SLC2A1 (glucose transporter 1, GLUT1) was a direct target of miR-199a-5p. Downregulation of SLC2A1 could not only inhibit cell proliferation, migration and cell cycle, but also promote cell apoptosis. The data suggests that miR-199a-5p can inhibit glucose metabolism in NSCLC by targeting SLC2A1.This study proves that miR-199a-5p / SLC2A1 can play an essential role in the development of NSCLC by targeting SLC2A1. It puts forward a new approach for clinical treatments of NSCLC.

3.
Indian J Pharmacol ; 52(6): 495-504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33666191

RESUMEN

PURPOSE: To identify the possibility of modulating retinal glucose transporters in diabetic conditions to prevent retinal complications of diabetic retinopathy. MATERIALS AND METHODS: In silico and in vitro binding assays were performed to assess the effect of genistein and positive controls (pioglitazone and estradiol) on nuclear receptor estrogen receptor beta and peroxisome proliferator-activated receptor gamma (PPARγ). In vivo effects of compounds were tested on diabetic rats. Structural and functional analysis of retina was performed at 28th day followed by gene expression analysis of glucose transporters and nuclear receptors. Pioglitazone and genistein levels were analyzed by liquid chromatography with tandem mass spectrometry. RESULTS: Genistein showed equi-affinity toward PPARγ in in silico experiments contrary to in vitro findings. In multidose study, their therapeutic effects were observed by analyzing the retinal function. Retinal gene expression studies revealed that both test agents significantly up regulated PPARγ, GLUT4, and down regulated GLUT1. Genistein showed significant up regulation of GLUT4 and down regulation of GLUT1 as compared to PGZ which has been well correlated with the Electroretinography (ERG) outcome. CONCLUSION: This study showed the possibility of selective upregulation of GLUT4 (independent of PPARγ activation) in the retina of diabetic rats using genistein. Selective modulation of retinal glucose transporters as therapeutic target in ocular diabetic complications can be possibly explored.


Asunto(s)
Retinopatía Diabética/prevención & control , Genisteína/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/efectos de los fármacos , PPAR gamma/efectos de los fármacos , Animales , Diabetes Mellitus Experimental , Femenino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA