Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.843
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2801-2816.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657601

RESUMEN

The niche is typically considered as a pre-established structure sustaining stem cells. Therefore, the regulation of its formation remains largely unexplored. Whether distinct molecular mechanisms control the establishment versus maintenance of a stem cell niche is unknown. To address this, we compared perinatal and adult bone marrow mesenchymal stromal cells (MSCs), a key component of the hematopoietic stem cell (HSC) niche. MSCs exhibited enrichment in genes mediating m6A mRNA methylation at the perinatal stage and downregulated the expression of Mettl3, the m6A methyltransferase, shortly after birth. Deletion of Mettl3 from developing MSCs but not osteoblasts led to excessive osteogenic differentiation and a severe HSC niche formation defect, which was significantly rescued by deletion of Klf2, an m6A target. In contrast, deletion of Mettl3 from MSCs postnatally did not affect HSC niche. Stem cell niche generation and maintenance thus depend on divergent molecular mechanisms, which may be exploited for regenerative medicine.


Asunto(s)
Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Metiltransferasas , Ratones Endogámicos C57BL , Nicho de Células Madre , Animales , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Diferenciación Celular , Epigénesis Genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Factores de Transcripción de Tipo Kruppel , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Metiltransferasas/metabolismo , Metiltransferasas/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Osteogénesis , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma/genética , Humanos
2.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38843832

RESUMEN

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Asunto(s)
Diferenciación Celular , Empalmosomas , Animales , Humanos , Ratones , Blastocisto/metabolismo , Blastocisto/citología , Blastómeros/metabolismo , Blastómeros/citología , Reprogramación Celular , Desarrollo Embrionario/genética , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Empalme del ARN , Empalmosomas/metabolismo , Células Madre Totipotentes/metabolismo , Células Madre Totipotentes/citología , Cigoto/metabolismo , Células Cultivadas , Modelos Moleculares , Estructura Terciaria de Proteína , Genoma Humano , Análisis de la Célula Individual , Factor 15 de Diferenciación de Crecimiento/química , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Epigenómica , Linaje de la Célula
3.
Cell ; 187(10): 2428-2445.e20, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38579712

RESUMEN

Alveolar type 2 (AT2) cells are stem cells of the alveolar epithelia. Previous genetic lineage tracing studies reported multiple cellular origins for AT2 cells after injury. However, conventional lineage tracing based on Cre-loxP has the limitation of non-specific labeling. Here, we introduced a dual recombinase-mediated intersectional genetic lineage tracing approach, enabling precise investigation of AT2 cellular origins during lung homeostasis, injury, and repair. We found AT1 cells, being terminally differentiated, did not contribute to AT2 cells after lung injury and repair. Distinctive yet simultaneous labeling of club cells, bronchioalveolar stem cells (BASCs), and existing AT2 cells revealed the exact contribution of each to AT2 cells post-injury. Mechanistically, Notch signaling inhibition promotes BASCs but impairs club cells' ability to generate AT2 cells during lung repair. This intersectional genetic lineage tracing strategy with enhanced precision allowed us to elucidate the physiological role of various epithelial cell types in alveolar regeneration following injury.


Asunto(s)
Células Epiteliales Alveolares , Pulmón , Células Madre , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Diferenciación Celular , Linaje de la Célula , Pulmón/citología , Pulmón/metabolismo , Pulmón/fisiología , Lesión Pulmonar/patología , Ratones Endogámicos C57BL , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Receptores Notch/metabolismo , Regeneración , Transducción de Señal , Células Madre/metabolismo , Células Madre/citología
4.
Cell ; 187(4): 931-944.e12, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320549

RESUMEN

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.


Asunto(s)
Escherichia coli , Biología Sintética , Diferenciación Celular , Escherichia coli/citología , Escherichia coli/genética , Integrasas/metabolismo , Biología Sintética/métodos , Aptitud Genética , Farmacorresistencia Bacteriana
5.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38906095

RESUMEN

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Asunto(s)
Quimera , Organogénesis , Animales , Humanos , Quimera/embriología , Implantación del Embrión , Embrión de Mamíferos/citología , Desarrollo Embrionario , Células Madre Embrionarias , Modelos Biológicos , Organoides , Medicina Regenerativa , Ingeniería de Tejidos/métodos
6.
Annu Rev Immunol ; 34: 1-30, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168238

RESUMEN

I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.


Asunto(s)
Antígeno CD47/metabolismo , Células Madre Hematopoyéticas/inmunología , Inmunoterapia/tendencias , Leucemia Mieloide Aguda/inmunología , Células Madre Multipotentes/fisiología , Linfocitos T/inmunología , Animales , Biomarcadores de Tumor/metabolismo , Antígeno CD47/genética , Humanos , Tolerancia Inmunológica , Leucemia Mieloide Aguda/terapia , Terapia Molecular Dirigida , Mutación/genética , Medicina Regenerativa , Inmunología del Trasplante
7.
Annu Rev Immunol ; 34: 449-78, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168243

RESUMEN

Hematopoietic stem cells (HSCs) and downstream progenitors have long been studied based on phenotype, cell purification, proliferation, and transplantation into myeloablated recipients. These experiments, complemented by data on expression profiles, mouse mutants, and humans with hematopoietic defects, are the foundation for the current hematopoietic differentiation tree. However, there are fundamental gaps in our knowledge of the quantitative and qualitative operation of the HSC/progenitor system under physiological and pathological conditions in vivo. The hallmarks of HSCs, self-renewal and multipotency, are observed in in vitro assays and cell transplantation experiments; however, the extent to which these features occur naturally in HSCs and progenitors remains uncertain. We focus here on work that strives to address these unresolved questions, with emphasis on fate mapping and modeling of the hematopoietic flow from stem cells toward myeloid and lymphoid lineages during development and adult life.


Asunto(s)
Envejecimiento/inmunología , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Células Progenitoras Linfoides/fisiología , Animales , Linaje de la Célula , Autorrenovación de las Células , Humanos , Ratones , Modelos Teóricos , Transcriptoma
8.
Cell ; 186(3): 513-527.e19, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657441

RESUMEN

Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.


Asunto(s)
Desarrollo Embrionario , Mesodermo , Somitos , Animales , Humanos , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Mesodermo/fisiología , Morfogénesis , Vía de Señalización Wnt , Organoides/metabolismo
9.
Cell ; 186(26): 5859-5875.e24, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38052213

RESUMEN

Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.


Asunto(s)
Embrión de Mamíferos , Células Madre Embrionarias , Animales , Técnicas de Cocultivo , Macaca fascicularis , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Endodermo/metabolismo , Linaje de la Célula
10.
Cell ; 186(4): 732-747.e16, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36803603

RESUMEN

Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.


Asunto(s)
Ferroptosis , Células Madre Hematopoyéticas , Humanos , Endopeptidasas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Transactivadores/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
11.
Cell ; 186(3): 497-512.e23, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657443

RESUMEN

The human embryo breaks symmetry to form the anterior-posterior axis of the body. As the embryo elongates along this axis, progenitors in the tail bud give rise to tissues that generate spinal cord, skeleton, and musculature. This raises the question of how the embryo achieves axial elongation and patterning. While ethics necessitate in vitro studies, the variability of organoid systems has hindered mechanistic insights. Here, we developed a bioengineering and machine learning framework that optimizes organoid symmetry breaking by tuning their spatial coupling. This framework enabled reproducible generation of axially elongating organoids, each possessing a tail bud and neural tube. We discovered that an excitable system composed of WNT/FGF signaling drives elongation by inducing a neuromesodermal progenitor-like signaling center. We discovered that instabilities in the excitable system are suppressed by secreted WNT inhibitors. Absence of these inhibitors led to ectopic tail buds and branches. Our results identify mechanisms governing stable human axial elongation.


Asunto(s)
Tipificación del Cuerpo , Mesodermo , Humanos , Vía de Señalización Wnt , Embrión de Mamíferos , Organoides
12.
Cell ; 186(16): 3460-3475.e23, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478862

RESUMEN

All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Humanos , Expresión Génica , Células HEK293 , Células HeLa , Mutación , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080201

RESUMEN

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Asunto(s)
Electrónica , Análisis de Secuencia de ARN , Humanos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Electrónica/métodos
14.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37137305

RESUMEN

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Humanos , Diferenciación Celular , Sistemas CRISPR-Cas , Genoma , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ingeniería Genética , Análisis de la Célula Individual
15.
Cell ; 186(23): 5165-5182.e33, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37852259

RESUMEN

Schizophrenia (SCZ) is a highly heritable mental disorder with thousands of associated genetic variants located mostly in the noncoding space of the genome. Translating these associations into insights regarding the underlying pathomechanisms has been challenging because the causal variants, their mechanisms of action, and their target genes remain largely unknown. We implemented a massively parallel variant annotation pipeline (MVAP) to perform SCZ variant-to-function mapping at scale in disease-relevant neural cell types. This approach identified 620 functional variants (1.7%) that operate in a highly developmental context and neuronal-activity-dependent manner. Multimodal integration of epigenomic and CRISPRi screening data enabled us to link these functional variants to target genes, biological processes, and ultimately alterations of neuronal physiology. These results provide a multistage prioritization strategy to map functional single-nucleotide polymorphism (SNP)-to-gene-to-endophenotype relations and offer biological insights into the context-dependent molecular processes modulated by SCZ-associated genetic variation.


Asunto(s)
Esquizofrenia , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética , Animales , Ratones , Secuenciación de Nucleótidos de Alto Rendimiento
16.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608654

RESUMEN

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Asunto(s)
Diferenciación Celular , Factores de Transcripción , Humanos , Cromatina , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Atlas como Asunto
17.
Cell ; 186(25): 5554-5568.e18, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065080

RESUMEN

Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-ß-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Diferenciación Celular , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Madre , Humanos , Animales , Ratones , Linaje de la Célula
18.
Cell ; 186(18): 3776-3792.e16, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37478861

RESUMEN

In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.


Asunto(s)
Implantación del Embrión , Gastrulación , Células Madre Pluripotentes , Animales , Femenino , Humanos , Embarazo , Diferenciación Celular , Embrión de Mamíferos , Desarrollo Embrionario , Organogénesis , Células Madre Pluripotentes/metabolismo , Primates
19.
Cell ; 185(12): 2164-2183.e25, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35597241

RESUMEN

X inactivation (XCI) is triggered by upregulation of XIST, which coats the chromosome in cis, promoting formation of a heterochromatic domain (Xi). XIST role beyond initiation of XCI is only beginning to be elucidated. Here, we demonstrate that XIST loss impairs differentiation of human mammary stem cells (MaSCs) and promotes emergence of highly tumorigenic and metastatic carcinomas. On the Xi, XIST deficiency triggers epigenetic changes and reactivation of genes overlapping Polycomb domains, including Mediator subunit MED14. MED14 overdosage results in increased Mediator levels and hyperactivation of the MaSC enhancer landscape and transcriptional program, making differentiation less favorable. We further demonstrate that loss of XIST and Xi transcriptional instability is common among human breast tumors of poor prognosis. We conclude that XIST is a gatekeeper of human mammary epithelium homeostasis, thus unveiling a paradigm in the control of somatic cell identity with potential consequences for our understanding of gender-specific malignancies.


Asunto(s)
Complejo Mediador/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Epigénesis Genética , Humanos , ARN Largo no Codificante/genética , Inactivación del Cromosoma X
20.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35489334

RESUMEN

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Asunto(s)
Cannabis , Enfermedades Cardiovasculares , Alucinógenos , Analgésicos , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Células Endoteliales , Genisteína/farmacología , Genisteína/uso terapéutico , Inflamación/tratamiento farmacológico , Ratones , Receptor Cannabinoide CB1 , Receptores de Cannabinoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA