RESUMEN
The formation and development of storage roots is the most important physiological process in sweetpotato production. Sucrose transporters (SUTs) regulate sucrose transport from source to sink organs and play important roles in growth and development of plants. However, whether SUTs involved in sweetpotato storage roots formation is so far unknown. In this study, we show that IbSUT1, a SUT, is localized to the plasma membrane. Overexpression of IbSUT1 in sweetpotato promotes the sucrose efflux rate from leaves, leading to increased sucrose levels in roots, thus induces lignin deposition in the stele, which inhibits the storage roots formation and compromises the yield. Heterologous expression of IbSUT1 in Arabidopsis significantly increases the sucrose accumulation and promotes lignification in the inflorescence stems. RNA-seq and biochemical analysis further demonstrated that IbMYB1 negatively regulates the expression of IbSUT1. Overexpression of IbMYB1 in Arabidopsis reduces the sucrose accumulation and lignification degree in the inflorescence stems. Moreover, co-overexpression of IbMYB1 and IbSUT1 restores the phenotype of lignin over-deposition in Arabidopsis. Collectively, our results reveal that IbSUT1 regulates source-sink sucrose transport and participates in the formation of sweetpotato storage roots and highlight the potential application of IbSUT1 in improving sweetpotato yield in the future.
Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas , Lignina , Proteínas de Transporte de Membrana , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Sacarosa , Lignina/metabolismo , Lignina/biosíntesis , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ipomoea batatas/crecimiento & desarrollo , Sacarosa/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Transporte BiológicoRESUMEN
In 2015, sweetpotato producers in the United States experienced one of the worst outbreaks of black rot recorded in history, with up to 60% losses reported in the field and packing houses and at shipping ports. Host resistance remains the ideal management tool to decrease crop losses. Lack of knowledge of Ceratocystis fimbriata biology represents a critical barrier for the deployment of resistance to black rot in sweetpotato. In this study, we scanned the recent near chromosomal-level assembly for putative secreted effectors in the sweetpotato C. fimbriata isolate AS236 using a custom fungal effector annotation pipeline. We identified a set of 188 putative effectors on the basis of secretion signal and in silico prediction in EffectorP. We conducted a deep RNA time-course sequencing experiment to determine whether C. fimbriata modulates effectors in planta and to define a candidate list of effectors expressed during infection. We examined the expression profile of two C. fimbriata isolates, a pre-epidemic (1990s) isolate and a post-epidemic (2015) isolate. Our in planta expression profiling revealed clusters of co-expressed secreted effector candidates. Based on fold-change differences of putative effectors in both isolates and over the course of infection, we suggested prioritization of 31 effectors for functional characterization. Among this set, we identified several effectors that provide evidence for a marked biotrophic phase in C. fimbriata during infection of sweetpotato storage roots. Our study revealed a catalog of effector proteins that provide insight into C. fimbriata infection mechanisms and represent a core catalog to implement effector-assisted breeding in sweetpotato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Ascomicetos , Ascomicetos/genética , Fitomejoramiento , Ceratocystis/genética , Secuencia de BasesRESUMEN
BACKGROUND: Sweetpotato is a typical ''potassium (K+) favoring'' food crop, which root differentiation process needs a large supply of potassium fertilizer and determine the final root yield. To further understand the regulatory network of the response to low potassium stress, here we analyze physiological and biochemical characteristics, and investigated root transcriptional changes in two sweetpotato genotypes, namely, - K tolerant "Xu32" and - K susceptible"NZ1". RESULT: We found Xu32 had the higher capability of K+ absorption than NZ1 with better growth performance, higher net photosynthetic rate and higher chlorophyll contents under low potassium stress, and identified 889 differentially expressed genes (DEGs) in Xu32, 634 DEGs in NZ1, 256 common DEGs in both Xu32 and NZ1. The Gene Ontology (GO) term in molecular function enrichment analysis revealed that the DEGs under low K+ stress are predominately involved in catalytic activity, binding, transporter activity and antioxidant activity. Moreover, the more numbers of identified DEGs in Xu32 than that in NZ1 responded to K+-deficiency belong to the process of photosynthesis, carbohydrate metabolism, ion transport, hormone signaling, stress-related and antioxidant system may result in different ability to K+-deficiency tolerance. The unique genes in Xu32 may make a great contribution to enhance low K+ tolerance, and provide useful information for the molecular regulation mechanism of K+-deficiency tolerance in sweetpotato. CONCLUSIONS: The common and distinct expression pattern between the two sweetpotato genotypes illuminate a complex mechanism response to low potassium exist in sweetpotato. The study provides some candidate genes, which can be used in sweetpotato breeding program for improving low potassium stress tolerance.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Potasio/metabolismo , Fotosíntesis/genética , Transcriptoma , Estrés Fisiológico/genéticaRESUMEN
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Asunto(s)
Ipomoea batatas , Estrés Fisiológico , Estrés Fisiológico/genética , Respuesta al Choque por Frío/genética , Ipomoea batatas/metabolismo , RNA-Seq , Cloruro de Sodio/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Regulación de la Expresión Génica de las Plantas , FilogeniaRESUMEN
BACKGROUND: bHLH transcription factors play significant roles in regulating plant growth and development, stress response, and anthocyanin biosynthesis. Sweetpotato is a pivotal food and industry crop, but little information is available on sweetpotato bHLH genes. RESULTS: Herein, 227 putative IbbHLH genes were defined on sweetpotato chromosomes, and fragment duplications were identified as the dominant driving force for IbbHLH expansion. These IbbHLHs were divided into 26 subfamilies through phylogenetic analysis, as supported by further analysis of exon-intron structure and conserved motif composition. The syntenic analysis between IbbHLHs and their orthologs from other plants depicted evolutionary relationships of IbbHLHs. Based on the transcriptome data under salt stress, the expression of 12 IbbHLHs was screened for validation by qRT-PCR, and differential and significant transcriptions under abiotic stress were detected. Moreover, IbbHLH123 and IbbHLH215, which were remarkably upregulated by stress treatments, had obvious transactivation activity in yeasts. Protein interaction detections and yeast two-hybrid assays suggested an intricate interaction correlation between IbbHLHs. Besides, transcriptome screening revealed that multiple IbbHLHs may be closely related to anthocyanin biosynthesis based on the phenotype (purple vs. white tissues), which was confirmed by subsequent qRT-PCR analysis. CONCLUSIONS: These results shed light on the promising functions of sweetpotato IbbHLHs in abiotic stress response and anthocyanin biosynthesis.
Asunto(s)
Antocianinas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Antocianinas/metabolismo , Filogenia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Fisiológico/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
The Erp3 protein, which is an important member of the p24 family, is primarily responsible for the transport of cargo from the ER to the Golgi apparatus in Saccharomyces cerevisiae. However, the function of Erp3 in plant pathogenic fungi has not been reported. In this study, we characterized the ERP3 gene in Ceratocystis fimbriata, which causes the devastating disease sweetpotato black rot. The ΔCferp3 mutants exhibited slow growth, reduced conidia production, attenuated virulence, and reduced ability to induce host to produce toxins. Further analysis revealed that CfErp3 was localized in the ER and vesicles and regulated endocytosis, cell wall integrity, and osmotic stress responses, modulated ROS levels, and the production of ipomeamarone during pathogen-host interactions. These results indicate that CfErp3 regulates C. fimbriata growth and pathogenicity as well as the production of ipomeamarone in sweetpotato by controlling endocytosis, oxidative homeostasis, and responses to cell wall and osmotic stresses.
Asunto(s)
Ascomicetos , Sesquiterpenos , Virulencia/genética , Ceratocystis , Saccharomyces cerevisiaeRESUMEN
Sweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is among the world's most important food crops and is North Carolina's most important vegetable crop. The recent introduction of Meloidogyne enterolobii poses a significant economic threat to North Carolina's sweetpotato industry and breeding resistance into new varieties has become a high priority for the US sweetpotato industry. Previous studies have shown that 'Tanzania', a released African landrace, is resistant to M. enterolobii. We screened the biparental sweetpotato mapping population, 'Tanzania' x 'Beauregard', for resistance to M. enterolobii by inoculating 246 full-sibs with 10,000 eggs each under greenhouse conditions. 'Tanzania', the female parent, was highly resistant, while 'Beauregard' was highly susceptible. Our bioassays exhibited strong skewing toward resistance for three measures of resistance: reproductive factor, eggs per gram of root tissue, and root gall severity ratings. A 1:1 segregation for resistance suggested a major gene conferred M. enterolobii resistance. Using a random-effect multiple interval mapping model, we identified a single major QTL, herein designated as qIbMe-4.1, on linkage group 4 that explained 70% of variation in resistance to M. enterolobii. This study provides a new understanding of the genetic basis of M. enterolobii resistance in sweetpotato and represents a major step towards the identification of selectable markers for nematode resistance breeding.
Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Ipomoea batatas , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Tylenchoidea , Ipomoea batatas/genética , Ipomoea batatas/parasitología , Animales , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Raíces de Plantas/parasitología , Raíces de Plantas/genética , Fenotipo , Marcadores GenéticosRESUMEN
Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.
Asunto(s)
Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Glutamato-Cisteína Ligasa , Ipomoea batatas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Ipomoea batatas/genética , Ipomoea batatas/fisiología , Ipomoea batatas/enzimología , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Estrés Salino/genética , Ácido Abscísico/metabolismo , Malondialdehído/metabolismo , Glutatión/metabolismo , Antioxidantes/metabolismo , Germinación/efectos de los fármacosRESUMEN
Sweetpotato (Ipomoea batatas) includes diverse cultivars with flesh textures ranging from dry to moist. Moist-fleshed cultivars often contain starch with a lower gelatinization temperature (GT). To elucidate the genetic determinants of flesh texture and starch GT, we conducted a QTL analysis using F1 progenies obtained from a cross between dry-fleshed and moist-fleshed cultivars, 'Benikomachi' (BK) and 'Amahazuki' (AH), by using an updated polyploid QTL-seq pipeline. Flesh texture was assessed based on the wet area ratio (WAR) observed on the cut surface of steamed tubers, as progenies with dry and moist flesh exhibited low and high WAR values, respectively, demonstrating a strong correlation. Three QTLs were found to regulate the WAR. Notably, two AH-derived alleles at 4.30 Mb on Itr_chr05 and 21.01 Mb on Itr_chr07, along with a BK-derived allele at 2.89 Mb on Itr_chr15, were associated with increased WAR. Starch GT, which displayed no correlation with either flesh texture or WAR, was distinctly influenced by two QTLs: a GT-increasing BK-derived allele at 1.74 Mb on Itr_chr05 and a GT-decreasing AH-derived allele at 30.16 Mb on Itr_chr12. Consequently, we developed DNA markers linked to WAR, offering a promising avenue for the targeted breeding of sweetpotato with the desired flesh textures.
RESUMEN
The reproduction and ability to cause root-galling of a California isolate of the peach root-knot nematode Meloidogyne floridensis was evaluated on seven sweetpotato (Ipomea batatas) cultivars and compared with an M. incognita race 3 and an M. incognita Mi-gene resistance-breaking isolate. The susceptible tomato (Solanum lycopersicum) cultivar Daniela and the Mi-gene-carrying resistant cultivar Celebrity were included as controls. Repeated trials were done in pots in a nematode-quarantine greenhouse at the University of California, Riverside. The three Meloidogyne isolates reproduced equally well on susceptible tomato. On Mi-gene resistant tomato, the reproduction and root-galling by M. floridensis was intermediate between the avirulent M. incognita race 3 and the resistance-breaking M. incognita isolate. The sweetpotato cultivars 'Beauregard' and 'Diane' were excellent hosts for all three Meloidogyne isolates. Cultivars Bellevue, Burgundy, and Covington were resistant to these isolates. The cultivars Bonita and Murasaki-29 were hosts for the M. floridensis and the resistance-breaking M. incognita isolate, which allowed an increase in nematode levels, but they were poor hosts, resulting in a decrease in nematode levels for the M. incognita race 3 isolate. The study showed that M. floridensis can reproduce on tomato and some sweetpotato cultivars that are considered resistant to M. incognita.
Asunto(s)
Resistencia a la Enfermedad , Ipomoea batatas , Enfermedades de las Plantas , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/fisiología , Tylenchoidea/genética , Ipomoea batatas/parasitología , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , California , Resistencia a la Enfermedad/genética , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Raíces de Plantas/parasitología , Raíces de Plantas/inmunologíaRESUMEN
The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) adversely impacts the quality and quantity of sweetpotato storage roots. Management of R. reniformis in sweetpotato remains a challenge because host plant resistance is not available, fumigants are detrimental to the environment and health, and crop rotation is not effective. We screened a core set of 24 sweetpotato plant introductions (PIs) against R. reniformis. Four PIs were resistant, and 10 were moderately resistant to R. reniformis, suggesting these PIs can serve as sources of resistance for sweetpotato resistance breeding programs. PI 595869, PI 153907, and PI 599386 suppressed 83 to 89% egg production relative to the susceptible control 'Beauregard', and these PIs were employed in subsequent experiments to determine if their efficacy against R. reniformis can be further increased by applying nonfumigant nematicides oxamyl, fluopyram, and fluensulfone. A 34 to 93% suppression of nematode reproduction was achieved by the application of nonfumigant nematicides, with oxamyl providing the best suppression followed by fluopyram and fluensulfone. Although sweetpotato cultivars resistant to R. reniformis are currently not available and there is a need for the development of safer yet highly effective nonfumigant nematicides, results from the current study suggest that complementing host plant resistance with nonfumigant nematicides can serve as an important tool for effective and sustainable nematode management.
Asunto(s)
Antinematodos , Ipomoea batatas , Enfermedades de las Plantas , Ipomoea batatas/parasitología , Animales , Antinematodos/farmacología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Interacciones Huésped-Parásitos/efectos de los fármacosRESUMEN
BACKGROUND: The utilization of sweetpotato starch in the food industry is significantly influenced by the granule size of the starch. To isolate sweetpotato starch fractions with different sizes, an efficient isolation method is in demand. The differences in thermal properties of starch fractions with different sizes from various sweetpotato varieties were revealed insufficiently. RESULTS: In this study, we devised a time-saving isolation technique to effectively isolate sweetpotato starch fractions based on granule sizes. The new technique was proved applicable for sweetpotato varieties with different flesh colors. The amylose contents of the isolated starch fractions were in the range 16.49-23.27%. A positive association was observed between amylose content, relative crystallinity of starch fractions and their granule size. Conversely, both the swelling power and water solubility at 95 °C displayed a consistent decline from more than 30 g g-1 to lower than 20 g g-1 as the granule size increased. Tp, To and Tc decreased gradually with an increase of starch granule size, while the medium- or small-sized starch fractions showed higher ΔH. In the first stage of thermogravimetric analysis curves, the weight of the small-sized starch fractions decreased the slowest, but no definite pattern was detected in the second or third stage. CONCLUSION: Therefore, the newly established technique and the results of this study will help better understand the properties of sweetpotato starch fractions with different sizes and certainly provide guidelines for the utilization of sweetpotato starch in food processing and product development. © 2024 Society of Chemical Industry.
RESUMEN
Sweetpotato is an important crop whose roots are consumed by people worldwide. Meloidogyne enterolobii stands out as a highly deleterious variant among the species of root-knot nematode that causes significant damage in sweetpotato. In the present study, the activity of four nematicides against M. enterolobii was assessed both in vitro and in growth cabinet experiments. After 48 hours of exposure, fluopyram and cyclobutrifluram had a greater negative effect on the motility of M. enterolobii second-stage juveniles (J2s) compared to fluensulfone and hymexazol, with respective median effective concentration (EC50) values of 0.204, 0.423, 22.335 and 216.622 mg L-1. When M. enterolobii eggs were incubated for 72 hours at the highest concentration of each nematicides, the inhibitory hatching effect of cyclobutrifluram (2.5 mg L-1), fluopyram (1.25 mg L-1) and fluensulfone (80 mg L-1) surpassed 85%, whereas hymexazol (640 mg L-1) was only 67%. Similar results were observed in growth cabinet experiments as well. The disease index (DI) and gall index (GI) were significantly decreased by all four nematicides compared to the control. However, the application of hymexazol did not yield a statistically significant difference in the egg masses index compared to the control, a finding which may be attributed to its potentially limited penetrability through the eggshell barrier. Overall, this study has demonstrated that all four nematicides effectively suppress M. enterolobii in sweetpotato, and this is the first report on the nematicidal activity of cyclobutrifluram and hymexazol against M. enterolobii.
RESUMEN
BACKGROUND: Polygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified. RESULTS: In this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes. CONCLUSION: A total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.
Asunto(s)
Ipomoea batatas , Poligalacturonasa , Poligalacturonasa/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Genoma de Planta/genética , Duplicación de Gen , Estrés Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , FilogeniaRESUMEN
BACKGROUND: Genes with valine glutamine (VQ) motifs play an essential role in plant growth, development, and resistance to biotic and abiotic stresses. However, little information on the VQ genes in sweetpotato and other Ipomoea species is available. RESULTS: This study identified 55, 58, 50 and 47 VQ genes from sweetpotato (I. batatas), I.triflida, I. triloba and I. nil, respectively. The phylogenetic analysis revealed that the VQ genes formed eight clades (I-VII), and the members in the same group exhibited similar exon-intron structure and conserved motifs distribution. The distribution of the VQ genes among the chromosomes of Ipomoea species was disproportional, with no VQ genes mapped on a few of each species' chromosomes. Duplication analysis suggested that segmental duplication significantly contributes to their expansion in sweetpotato, I.trifida, and I.triloba, while the segmental and tandem duplication contributions were comparable in I.nil. Cis-regulatory elements involved in stress responses, such as W-box, TGACG-motif, CGTCA-motif, ABRE, ARE, MBS, TCA-elements, LTR, and WUN-motif, were detected in the promoter regions of the VQ genes. A total of 30 orthologous groups were detected by syntenic analysis of the VQ genes. Based on the analysis of RNA-seq datasets, it was found that the VQ genes are expressed distinctly among different tissues and hormone or stress treatments. A total of 40 sweetpotato differentially expressed genes (DEGs) refer to biotic (sweetpotato stem nematodes and Ceratocystis fimbriata pathogen infection) or abiotic (cold, salt and drought) stress treatments were detected. Moreover, IbVQ8, IbVQ25 and IbVQ44 responded to the five stress treatments and were selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. CONCLUSIONS: Our study may provide new insights into the evolution of VQ genes in the four Ipomoea genomes and contribute to the future molecular breeding of sweetpotatoes.
Asunto(s)
Ipomoea batatas , Ipomoea , Ipomoea/genética , Glutamina/genética , Valina/genética , Filogenia , Genoma , Ipomoea batatas/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genéticaRESUMEN
Plant viruses pose a continuous and serious threat to crop production worldwide, and globalization and climate change are exacerbating the establishment and rapid spread of new viruses. Simultaneously, developments in genome sequencing technology, nucleic acid amplification methods, and epidemiological modeling are providing plant health specialists with unprecedented opportunities to confront these major threats to the food security and livelihoods of millions of resource-constrained smallholders. In this perspective, we have used recent examples of integrated application of these technologies to enhance understanding of the emergence of plant viral diseases of key food security crops in low- and middle-income countries. We highlight how international funding and collaboration have enabled high-throughput sequencing-based surveillance approaches, targeted field and lab-based diagnostic tools, and modeling approaches that can be effectively used to support surveillance and preparedness against existing and emerging plant viral threats. The importance of national and international collaboration and the future role of CGIAR in further supporting these efforts, including building capabilities to make optimal use of these technologies in low- and middle-income countries, are discussed. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Asunto(s)
Virus de Plantas , Virosis , Enfermedades de las Plantas , Productos Agrícolas , Seguridad AlimentariaRESUMEN
Sweetpotato (Ipomoea batatas) cultivars grown in Japan are highly valued for their excellent sweetness, high quality, and good texture. The export volume of sweetpotato from Japan has been rising rapidly, with a 10-fold increase on a weight basis over the last 10 years. However, since sweetpotato is propagated vegetatively from storage roots, it is easy to cultivate and propagate this crop, prompting concerns that Japanese sweetpotato cultivars/lines are being exported overseas, cultivated without permission, or reimported. Therefore, a rapid and accurate cultivar identification methodology is needed. In this study, we comprehensively analyzed the insertion sites of Cl8 retrotransposon to develop a cultivar identification technique for the Japanese cultivars 'Beniharuka' and 'Fukumurasaki'. These two cultivars were successfully distinguished from other cultivars using a minimum of two marker sets. Using the chromatographic printed array strip (C-PAS) method for DNA signal detection, 'Beniharuka' and 'Fukumurasaki' can be precisely identified using a single strip of chromatographic paper based on multiplex DNA signals derived from the amplicons of the Cl8 insertion sites. Since this method can detect DNA signals in only ~15 minutes, we expect that our method will facilitate rapid, reliable, and convenient cultivar discrimination for on-site inspection of sweetpotato.
RESUMEN
Sweetpotato variety breeding is always a long process. Screening of hybrid offspring is dominated by empirical judgment in this process. Data analysis and decision fatigue have been troubling breeders. In recent years, the low-efficiency screening mode has been unable to meet the requirements of sweetpotato germplasm innovation. Therefore, it is necessary to construct a high-efficiency method that can screen germplasms for different usages, for mining elite genotypes, and to create dedicated sweetpotato varieties. In this article, the multicriteria decision-making (MCDM) model was constructed based on six agronomic traits, including fresh root yield, vine length, vine diameter, branch number, root number and the spatial distribution of storage roots, and five quality traits, including dry matter content, marketable root yield, uniformity of roots, starch content and the edible quality score. Among these, the edible quality score was calculated by using fuzzy comprehensive evaluation to integrate the sensory scores of color, odor, sweetness, stickiness and fibrous taste. The MCDM model was compared with the traditional screening method via an evaluation in 25 sweetpotato materials. The interference of subjective factors on the evaluation results was significantly reduced. The MCDM model is more overall, more accurate and faster than the traditional screening method in the selection of elite sweetpotato materials. It could be programmed to serve the breeders in combination with the traditional screening method.
RESUMEN
Sweetpotato (Ipomoea batatas) is one of the most important crops in China. To gain a clearer picture of the occurrence of diseases on sweetpotato, 50 fields (100 plants/field) were randomly surveyed in prominent sweetpotato growing areas of Lulong county, Hebei Province in the years 2021-2022. Plants showing chlorotic leaf distortion with mildly twisted young leaves and stunted vines were observed frequently. It was similar to the symptoms of chlorotic leaf distortion of sweetpotato (Clark et al. 2013). The incidence of disease with patch pattern ranged from 15% to 30%. Ten symptomatic leaves were excised, surface disinfested with 2% sodium hypochlorite for 1 min, rinsed three times in sterilized ddH2O, and cultured on potato dextrose agar (PDA) at 25°C. Nine fungal isolates were obtained. A pure culture of representative isolate FD10 obtained after serial hyphal tip transfer was examined for morphological and genetic characters. Colonies of isolate FD10 on PDA at 25°C were slow growing (4±0.1mm/day) with aerial, white-to-pink mycelium. Lobed colonies had greyish-orange pigmentation in reverse and conidia aggegated in false heads. Conidiophores were prostrate and short. Phialides were mostly monophialidic but occasionally polyphialidic. Polyphialidic openings often denticulate in a rectangular arrangement. Microconidia were abundant, long, oval to allantoid, mostly none or one septate, and 4.79 to 9.53 × 2.08 to 3.22 µm (n = 20). Macroconidia were fusiform to falcate with a beaked apical cell and a footlike basal cell, 3 to 5 septate, and 25.03 to 52.92 × 2.56 to 4.49 µm. Chlamydospores were absent. All in agreement with the morphology of Fusarium denticulatum (Nirenberg and O'Donnell 1998). Genomic DNA of isolate FD10 was extracted. The EF-1α and ß-tubulin genes were amplified and sequenced (O'Donnell and Cigelnik 1997; O'Donnell et al. 1998). The obtained sequences were deposited in GenBank (accession nos. OQ555191 and OQ555192). BLASTn revealed that those sequences showed 99.86% (EF-1α) and 99.93% (ß-tubulin) homology with the relative sequences of F. denticulatum type strain CBS407.97 (accession nos. MT011002.1 and MT011060.1), respectively. Furthermore, a neighbor-joining phylogenetic tree based on the EF-1α and ß-tubulin sequences revealed that the isolate FD10 clustered with F. denticulatum. Based on morphological characteristics and sequence analysis, the isolate FD10 associated with chlorotic leaf distortion of sweetpotato was identified as F. denticulatum. Pathogenicity tests were performed by immersing ten 25-cm-long vine-tip cuttings of cultivar Jifen 1 origin from tissue culture in a conidial suspension (1 × 106 conidia per ml) of isolate FD10. Vines immersed in sterile distilled water used as a control. All inoculated plants in 25-cm plastic pots were incubated in a climate chamber at 28â and 80% RH for two and half months and the control were incubated in a separate climate chamber. Nine inoculated plants developed chlorotic terminals, moderate interveinal chlorosis and slight leaf distortion. No symptoms were observed on the control plants. The pathogen was reisolated from inoculated leaves and matched the morphological and molecular characteristics of the original isolates, thus fulfilling Koch's postulates. To our knowledge, this is the first report of F. denticulatum causing chlorotic leaf distortion of sweetpotato in China. Its identification will promote the management of this disease in China.
RESUMEN
Sweetpotato (Ipomoea batatas (L.) Lam.) is a globally significant storage root crop, but it is highly susceptible to yield reduction under severe drought conditions. Therefore, understanding the mechanism of sweetpotato resistance to drought stress is helpful for the creation of outstanding germplasm and the selection of varieties with strong drought resistance. In this study, we conducted a comprehensive analysis of the phenotypic and physiological traits of 17 sweetpotato breeding lines and 10 varieties under drought stress through a 48 h treatment in a Hoagland culture medium containing 20% PEG6000. The results showed that the relative water content (RWC) and vine-tip fresh-weight reduction (VTFWR) in XS161819 were 1.17 and 1.14 times higher than those for the recognized drought-resistant variety Chaoshu 1. We conducted RNA-seq analysis and weighted gene co-expression network analysis (WGCNA) on two genotypes, XS161819 and 18-12-3, which exhibited significant differences in drought resistance. The transcriptome analysis revealed that the hormone signaling pathway may play a crucial role in determining the drought resistance in sweetpotato. By applying WGCNA, we identified twenty-two differential expression modules, and the midnight blue module showed a strong positive correlation with drought resistance characteristics. Moreover, twenty candidate Hub genes were identified, including g47370 (AFP2), g14296 (CDKF), and g60091 (SPBC2A9), which are potentially involved in the regulation of drought resistance in sweetpotato. These findings provide important insights into the molecular mechanisms underlying drought resistance in sweetpotato and offer valuable genetic resources for the development of drought-resistant sweetpotato varieties in the future.