Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.608
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2400084121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968114

RESUMEN

MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.

2.
Mol Cell Proteomics ; 23(7): 100801, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880243

RESUMEN

T cell activation is a complex biological process of naive cells maturing into effector cells. Proteomic and phospho-proteomic approaches have provided critical insights into this process, yet it is not always clear how changes in individual proteins or phosphorylation sites have functional significance. Here, we developed the Phosphorylation Integrated Thermal Shift Assay (PITSA) that combines the measurement of protein or phosphorylation site abundance and thermal stability into a single tandem mass tags experiment and apply this method to study T cell activation. We quantified the abundance and thermal stability of over 7500 proteins and 5000 phosphorylation sites and identified significant differences in chromatin-related, TCR signaling, DNA repair, and proliferative phosphoproteins. PITSA may be applied to a wide range of biological contexts to generate hypotheses as to which proteins or phosphorylation sites are functionally regulated in a given system as well as the mechanisms by which this regulation may occur.

3.
Proc Natl Acad Sci U S A ; 120(13): e2220728120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943890

RESUMEN

Spectral tuning of visual pigments often facilitates adaptation to new environments, and it is intriguing to study the visual ecology of pelagic sharks with secondarily expanded habitats. The whale shark, which dives into the deep sea of nearly 2,000 meters besides near-surface filter feeding, was previously shown to possess the 'blue-shifted' rhodopsin (RHO), which is a signature of deep-sea adaptation. In this study, our spectroscopy of recombinant whale shark RHO mutants revealed that this blue shift is caused dominantly by an unprecedented spectral tuning site 94. In humans, the mutation at the site causes congenital stationary night blindness (CSNB) by reducing the thermal stability of RHO. Similarly, the RHO of deep-diving whale shark has reduced thermal stability, which was experimentally shown to be achieved by site 178 and 94. RHOs having the natural substitution at site 94 are also found in some Antarctic fishes, suggesting that the blue shift by the substitution at the CSNB site associated with the reduction in thermal stability might be allowed in cold-water deep-sea habitats.


Asunto(s)
Rodopsina , Tiburones , Humanos , Animales , Rodopsina/genética , Mutación , Tiburones/genética , Regiones Antárticas
4.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913681

RESUMEN

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.


Asunto(s)
Evolución Molecular , Simulación de Dinámica Molecular , Estabilidad Proteica , Cristalografía por Rayos X , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Estabilidad de Enzimas
5.
Cell Mol Life Sci ; 81(1): 257, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874784

RESUMEN

Adenine base editors (ABEs), consisting of CRISPR Cas nickase and deaminase, can chemically convert the A:T base pair to G:C. ABE8e, an evolved variant of the base editor ABE7.10, contains eight directed evolution mutations in its deaminase TadA8e that significantly increase its base editing activity. However, the functional implications of these mutations remain unclear. Here, we combined molecular dynamics (MD) simulations and experimental measurements to investigate the role of the directed-evolution mutations in the base editing catalysis. MD simulations showed that the DNA-binding affinity of TadA8e is higher than that of the original deaminase TadA7.10 in ABE7.10 and is mainly driven by electrostatic interactions. The directed-evolution mutations increase the positive charge density in the DNA-binding region, thereby enhancing the electrostatic attraction of TadA8e to DNA. We identified R111, N119 and N167 as the key mutations for the enhanced DNA binding and confirmed them by microscale thermophoresis (MST) and in vivo reversion mutation experiments. Unexpectedly, we also found that the directed mutations improved the thermal stability of TadA8e by ~ 12 °C (Tm, melting temperature) and that of ABE8e by ~ 9 °C, respectively. Our results demonstrate that the directed-evolution mutations improve the substrate-binding ability and protein stability of ABE8e, thus providing a rational basis for further editing optimisation of the system.


Asunto(s)
ADN , Evolución Molecular Dirigida , Edición Génica , Simulación de Dinámica Molecular , Mutación , ADN/metabolismo , ADN/genética , ADN/química , Edición Génica/métodos , Adenina/metabolismo , Adenina/química , Estabilidad Proteica , Unión Proteica , Electricidad Estática , Sistemas CRISPR-Cas/genética
6.
Mol Cell Proteomics ; 22(6): 100560, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119972

RESUMEN

Heat shock proteins are chaperones, and they are responsible for protein folding in cells. Heat shock protein 90 (HSP90) is one of the most important chaperones in human cells, and its inhibition is promising for cancer therapy. However, despite the development of multiple HSP90 inhibitors, none of them has been approved for disease treatment due to unexpected cellular toxicity and side effects. Hence, a more comprehensive investigation of cellular response to HSP90 inhibitors can aid in a better understanding of the molecular mechanisms of the cytotoxicity and side effects of these inhibitors. The thermal stability shifts of proteins, which represent protein structure and interaction alterations, can provide valuable information complementary to the results obtained from commonly used abundance-based proteomics analysis. Here, we systematically investigated cell response to different HSP90 inhibitors through global quantification of protein thermal stability changes using thermal proteome profiling, together with the measurement of protein abundance changes. Besides the targets and potential off-targets of the drugs, proteins with significant thermal stability changes under the HSP90 inhibition are found to be involved in cell stress responses and the translation process. Moreover, proteins with thermal stability shifts under the inhibition are upstream of those with altered expression. These findings indicate that the HSP90 inhibition perturbs cell transcription and translation processes. The current study provides a different perspective for achieving a better understanding of cellular response to chaperone inhibition.


Asunto(s)
Antineoplásicos , Proteoma , Humanos , Proteoma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas de Choque Térmico , Antineoplásicos/farmacología
7.
Proc Natl Acad Sci U S A ; 119(40): e2209524119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161946

RESUMEN

Collagen is the most abundant structural protein in humans, providing crucial mechanical properties, including high strength and toughness, in tissues. Collagen-based biomaterials are, therefore, used for tissue repair and regeneration. Utilizing collagen effectively during materials processing ex vivo and subsequent function in vivo requires stability over wide temperature ranges to avoid denaturation and loss of structure, measured as melting temperature (Tm). Although significant research has been conducted on understanding how collagen primary amino acid sequences correspond to Tm values, a robust framework to facilitate the design of collagen sequences with specific Tm remains a challenge. Here, we develop a general model using a genetic algorithm within a deep learning framework to design collagen sequences with specific Tm values. We report 1,000 de novo collagen sequences, and we show that we can efficiently use this model to generate collagen sequences and verify their Tm values using both experimental and computational methods. We find that the model accurately predicts Tm values within a few degrees centigrade. Further, using this model, we conduct a high-throughput study to identify the most frequently occurring collagen triplets that can be directly incorporated into collagen. We further discovered that the number of hydrogen bonds within collagen calculated with molecular dynamics (MD) is directly correlated to the experimental measurement of triple-helical quality. Ultimately, we see this work as a critical step to helping researchers develop collagen sequences with specific Tm values for intended materials manufacturing methods and biomedical applications, realizing a mechanistic materials by design paradigm.


Asunto(s)
Aprendizaje Profundo , Secuencia de Aminoácidos , Materiales Biocompatibles , Colágeno/química , Humanos , Simulación de Dinámica Molecular
8.
Nano Lett ; 24(2): 549-556, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38174901

RESUMEN

Rhombic dodecahedral nanocrystals have been considered particularly difficult to synthesize because they are enclosed by {110}, a low-index facet with the greatest surface energy. Recently, we demonstrated the use of seed-mediated growth for the facile and robust synthesis of Au rhombic dodecahedral nanocrystals (AuRD). While the unique shape and surface structure of AuRD are desirable for potential applications in plasmonics and catalysis, respectively, their high surface energy makes them highly susceptible to thermal degradation. Here we demonstrate that it is feasible to greatly improve the thermal stability with some sacrifice to the plasmonic properties of the original AuRD by coating their surface with an ultrathin shell made of Pt. Our in situ electron microscopy analysis indicates that the ultrathin Pt coating can increase the thermal stability from 60 up to 450 °C, a trend that is also supported by the results from a computational study.

9.
Nano Lett ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608158

RESUMEN

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a p-type behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

10.
Nano Lett ; 24(5): 1587-1593, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259044

RESUMEN

Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.

11.
Nano Lett ; 24(4): 1392-1398, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227481

RESUMEN

Nanoparticle sintering has long been a major challenge in developing catalytic systems for use at elevated temperatures. Here we report an in situ electron microscopy study of the extraordinary sinter resistance of a catalytic system comprised of sub-2 nm Pt nanoparticles on a Se-decorated carbon support. When heated to 700 °C, the average size of the Pt nanoparticles only increased from 1.6 to 2.2 nm, while the crystal structure, together with the {111} and {100} facets, of the Pt nanoparticles was well retained. Our electron microscopy analyses suggested that the superior resistance against sintering originated from the Pt-Se interaction. Confirmed by energy-dispersive X-ray elemental mapping and electron energy loss spectra, the Se atoms surrounding the Pt nanoparticles could survive the heating. This work not only offers an understanding of the physics behind the thermal behavior of this catalytic material but also sheds light on the future development of sinter-resistant catalytic systems.

12.
J Lipid Res ; 65(3): 100506, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38272356

RESUMEN

Diacylglycerol kinases (DGKs) are lipid kinases that mediate the phosphorylation of diacylglycerol (DAG) leading to the production of phosphatidic acid (PtdOH). To examine the role of phosphorylation on DGK-θ, we first identified the phosphorylated sites on endogenous DGK-θ from mouse brain and found four sites: S15, S17, which we refer to phosphomotif-1 sites, and S22 and S26 which we refer to as phosphomotif-2 sites. This study focused on the role of these phosphorylated sites on enzyme activity, membrane binding, thermal stability, and cellular half-life of DGK-θ. After generating a construct devoid of all non-catalytic phosphorylation sites (4A), we also generated other constructs to mimic phosphorylation of these residues by mutating them to glutamate (E). Our data demonstrate that an increase in membrane affinity requires the phosphorylation of all four endogenous sites as the phosphomimetic 4E but not other phosphomimietics. Furthermore, 4E also shows an increase in basal activity as well as an increase in the Syt1-induced activity compared to 4A. It is noteworthy that these phosphorylations had no effect on the thermal stability or cellular half-life of this enzyme. Interestingly, when only one phosphorylation domain (phosphomotif-1 or phosphomotif-2) contained phosphomimetics (S15E/S17E or S22E/S26E), the basal activity was also increased but membrane binding affinity was not increased. Furthermore, when only one residue in each domain mimicked an endogenous phosphorylated serine (S15E/S22E or S17E/S26E), the Syt1-induced activity as well as membrane binding affinity decreased relative to 4A. These results indicate that these endogenous phosphorylation sites contribute differentially to membrane binding and enzymatic activity.


Asunto(s)
Diacilglicerol Quinasa , Diglicéridos , Animales , Ratones , Fosforilación , Diglicéridos/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo
13.
J Biol Chem ; 299(8): 104978, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390987

RESUMEN

The acylated Repeats in ToXins (RTX) leukotoxins, the adenylate cyclase toxin (CyaA) or α-hemolysin (HlyA), bind ß2 integrins of leukocytes but also penetrate cells lacking these receptors. We show that the indoles of conserved tryptophans in the acylated segments, W876 of CyaA and W579 of HlyA, are crucial for ß2 integrin-independent membrane penetration. Substitutions of W876 by aliphatic or aromatic residues did not affect acylation, folding, or the activities of CyaA W876L/F/Y variants on cells expressing high amounts of the ß2 integrin CR3. However, toxin activity of CyaA W876L/F/Y on cells lacking CR3 was strongly impaired. Similarly, a W579L substitution selectively reduced HlyA W579L cytotoxicity towards cells lacking ß2 integrins. Intriguingly, the W876L/F/Y substitutions increased the thermal stability (Tm) of CyaA by 4 to 8 °C but locally enhanced the accessibility to deuteration of the hydrophobic segment and of the interface of the two acylated loops. W876Q substitution (showing no increase in Tm), or combination of W876F with a cavity-filling V822M substitution (this combination decreasing the Tm closer to that of CyaA), yielded a milder defect of toxin activity on erythrocytes lacking CR3. Furthermore, the activity of CyaA on erythrocytes was also selectively impaired when the interaction of the pyrrolidine of P848 with the indole of W876 was ablated. Hence, the bulky indoles of residues W876 of CyaA, or W579 of HlyA, rule the local positioning of the acylated loops and enable a membrane-penetrating conformation in the absence of RTX toxin docking onto the cell membrane by ß2 integrins.


Asunto(s)
Toxina de Adenilato Ciclasa , Antígenos CD18 , Triptófano , Toxina de Adenilato Ciclasa/química , Toxina de Adenilato Ciclasa/genética , Toxina de Adenilato Ciclasa/metabolismo , Bordetella pertussis , Antígenos CD18/genética , Antígenos CD18/metabolismo , Membrana Celular/metabolismo , Eritrocitos/metabolismo , Triptófano/química , Triptófano/genética , Triptófano/metabolismo , Secuencia Conservada
14.
J Biol Chem ; 299(7): 104886, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37271339

RESUMEN

The effect of mutations of the catalytic dyad residues of SARS-CoV-2 main protease (MProWT) on the thermodynamics of binding of covalent inhibitors comprising nitrile [nirmatrelvir (NMV), NBH2], aldehyde (GC373), and ketone (BBH1) warheads to MPro is examined together with room temperature X-ray crystallography. When lacking the nucleophilic C145, NMV binding is ∼400-fold weaker corresponding to 3.5 kcal/mol and 13.3 °C decrease in free energy (ΔG) and thermal stability (Tm), respectively, relative to MProWT. The H41A mutation results in a 20-fold increase in the dissociation constant (Kd), and 1.7 kcal/mol and 1.4 °C decreases in ΔG and Tm, respectively. Increasing the pH from 7.2 to 8.2 enhances NMV binding to MProH41A, whereas no significant change is observed in binding to MProWT. Structures of the four inhibitor complexes with MPro1-304/C145A show that the active site geometries of the complexes are nearly identical to that of MProWT with the nucleophilic sulfur of C145 positioned to react with the nitrile or the carbonyl carbon. These results support a two-step mechanism for the formation of the covalent complex involving an initial non-covalent binding followed by a nucleophilic attack by the thiolate anion of C145 on the warhead carbon. Noncovalent inhibitor ensitrelvir (ESV) exhibits a binding affinity to MProWT that is similar to NMV but differs in its thermodynamic signature from NMV. The binding of ESV to MProC145A also results in a significant, but smaller, increase in Kd and decrease in ΔG and Tm, relative to NMV.


Asunto(s)
COVID-19 , Inhibidores de Proteasa de Coronavirus , SARS-CoV-2 , Humanos , Carbono , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Lactamas , Leucina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nitrilos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
15.
Biochem Biophys Res Commun ; 700: 149592, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38295648

RESUMEN

Fab is a promising format for antibody drug. Therefore, efforts have been made to improve its thermal stability for therapeutic and commercial use. So far, we have attempted to introduce a disulfide bond into the Fab fragment to improve its thermal stability and demonstrated that it is possible to do this without sacrificing its biochemical function. In this study, to develop a novel stabilization strategy for Fab, we attempted to introduce a disulfide bond between the variable and constant domains and prepared three variants of Fab; H:G10C + H:P210C, L:P40C + L:E165C, and H:G10C + H:P210C + L:P40C + L:E165C. Differential scanning calorimetry measurements showed that each of these variants had improved thermal stability. In addition, the variants with two disulfide bonds demonstrated a 6.5 °C increase in their denaturation temperatures compared to wild-type Fab. The introduction of disulfide bonds was confirmed by X-ray crystallography, and the variants retained their antigen-binding activity. The variants were also found to be less aggregative than the wild type. Our results demonstrate that the introduction of a disulfide bond between the variable and constant domains significantly improves the thermal stability of Fab.


Asunto(s)
Disulfuros , Fragmentos Fab de Inmunoglobulinas , Adalimumab/química , Dominios Proteicos , Temperatura , Fragmentos Fab de Inmunoglobulinas/química , Disulfuros/química
16.
Biochem Biophys Res Commun ; 691: 149316, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38039832

RESUMEN

For certain industrial applications, the stability of protein oligomers is important. In this study, we demonstrated an efficient method to improve the thermal stability of oligomers using the trimeric protein chloramphenicol acetyltransferase (CAT) as the model. We substituted all interfacial residues of CAT with alanine to detect residues critical for oligomer stability. Mutation of six of the forty-nine interfacial residues enhanced oligomer thermal stability. Site saturation mutagenesis was performed on these six residues to optimize the side chains. About 15% of mutations enhanced thermal stability by more than 0.5 °C and most did not disrupt activity of CAT. Certain combinations of mutations further improved thermal stability and resistance against heat treatment. The quadruple mutant, H17V/N34S/F134A/D157C, retained the same activity as the wild-type after heat treatment at 9 °C higher temperature than the wild-type CAT. Furthermore, combinations with only alanine substitutions also improved thermal stability, suggesting the method we developed can be used for rapid modification of industrially important proteins.


Asunto(s)
Alanina , Alanina/genética , Mutagénesis , Mutación , Mutagénesis Sitio-Dirigida , Cloranfenicol O-Acetiltransferasa , Estabilidad de Enzimas
17.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664752

RESUMEN

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Asunto(s)
Dependovirus , Vectores Genéticos , Poloxámero , Animales , Humanos , Células HEK293 , Poloxámero/farmacología , Poloxámero/química , Ratones , Dependovirus/genética , Vectores Genéticos/genética , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Temperatura , Genes Reporteros
18.
Small ; 20(28): e2310749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308118

RESUMEN

The unfavorable morphology and high crystallization temperature (Tc) of inorganic perovskites pose a significant challenge to their widespread application in photovoltaics. In this study, an effective approach is proposed to enhance the morphology of cesium lead triiodide (CsPbI3) while lowering its Tc. By introducing dimethylammonium acetate into the perovskite precursor solution, a rapid nucleation stage is facilitated, and significantly enhances the crystal growth of the intermediate phase at low annealing temperatures, followed by a slow crystal growth stage at higher annealing temperatures. This results in a uniform and dense morphology in CsPbI3 perovskite films with enhanced crystallinity, simultaneously reducing the Tc from 200 to 150 °C. Applying this approach in positive-intrinsic-negative (p-i-n) inverted cells yields a high power conversion efficiency of 19.23%. Importantly, these cells exhibit significantly enhanced stability, even under stress at 85 °C.

19.
Small ; 20(2): e2305670, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658521

RESUMEN

N-type Mg3 Sb2 -based thermoelectric materials show great promise in power generation due to their mechanical robustness, low cost of Mg, and high figure of merit (ZT) over a wide range of temperatures. However, their poor thermal stability hinders their practical applications. Here, MgB2 is introduced to improve the thermal stability of n-type Mg3 Sb2 . Enabled by MgB2 decomposition, extra Mg can be released into the matrix for Mg compensation thermodynamically, and secondary phases of Mg─B compounds can kinetically prevent Mg diffusion along grain boundaries. These synergetic effects inhibit the formation of Mg vacancies at elevated temperatures, thereby enhancing the thermal stability of n-type Mg3 Sb2 . Consequently, the Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 (MgB2 )0.03 sample exhibits negligible variation in thermoelectric performance during the 120-hour continuous measurement at 673 K. Moreover, the ZT of n-type Mg3 Sb2 can be maintained by adding MgB2 , reaching a high average ZT of ≈1.1 within 300-723 K. An eight-pair Mg3 Sb2 -GeTe-based thermoelectric device is also fabricated, achieving an energy conversion efficiency of ≈5.7% at a temperature difference of 438 K with good thermal stability. This work paves a new way to enhance the long-term thermal stability of n-type Mg3 Sb2 -based alloys and other thermoelectrics for practical applications.

20.
Small ; 20(13): e2306871, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37967323

RESUMEN

Hafnia-based ferroelectrics have gained much attention because they can be used in highly scaled, advanced complementary metal-oxide semiconductor (CMOS) memory devices. However, thermal stability should be considered when integrating hafnia-based ferroelectric transistors in advanced CMOS devices, as they can be exposed to high-temperature processes. This work proposed that doping of Al in hafnia-based ferroelectric material can lead to high thermal stability. A ferroelectric capacitor based on Al-doped hafnia, which can be used for one-transistor-one-capacitor applications, exhibits stable operation even after annealing at 900 °C. Moreover, it demonstrates that the ferroelectric transistors based on Al-doped hafnia for one-transistor applications, such as ferroelectric NAND, retain their memory states for 10 years at 100 °C. This study presents a practical method to achieve thermally stable ferroelectric memories capable of enduring high-temperature processes and operation conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA