Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183636

RESUMEN

Spatially selective vagus nerve stimulation (sVNS) offers a promising approach for addressing heart disease with enhanced precision. Despite its therapeutic potential, VNS is limited by off-target effects and the need for time-consuming titration. Our research aimed to determine the spatial organization of cardiac afferent and efferent fibres within the vagus nerve of pigs to achieve targeted neuromodulation. Using trial-and-error sVNS in vivo and ex vivo micro-computed tomography fascicle tracing, we found significant spatial separation between cardiac afferent and cardiac efferent fibres at the mid-cervical level and they were localized on average on opposite sides of the nerve cross-section. This was consistent between both in vivo and ex vivo methods. Specifically, cardiac afferent fibres were located near pulmonary fibres, consistent with findings of cardiopulmonary convergent circuits and, notably, cardiac efferent fascicles were exclusive. These cardiac efferent regions were located in close proximity to the recurrent laryngeal regions. This is consistent with the roughly equitable spread across the nerve of the afferent and efferent fibres. Our study demonstrated that targeted neuromodulation via sVNS could achieve scalable heart rate decreases without eliciting cardiac afferent-related reflexes; this is desirable for reducing sympathetic overactivation associated with heart disease. These findings indicate that understanding the spatial organization of cardiac-related fibres within the vagus nerve can lead to more precise and effective VNS therapy, minimizing off-target effects and potentially mitigating the need for titration. KEY POINTS: Spatially selective vagus nerve stimulation (sVNS) presents a promising approach for addressing chronic heart disease with enhanced precision. Our study reveals significant spatial separation between cardiac afferent and efferent fibres in the vagus nerve, particularly at the mid-cervical level. Utilizing trial-and-error sVNS in vivo and micro-computed tomography fascicle tracing, we demonstrate the potential for targeted neuromodulation, achieving therapeutic effects such as scalable heart rate decrease without stimulating cardiac afferent-related reflexes. This spatial understanding opens avenues for more effective VNS therapy, minimizing off-target effects and potentially eliminating the need for titration, thereby expediting therapeutic outcomes in myocardial infarction and related conditions.

2.
J Neuroinflammation ; 21(1): 79, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549144

RESUMEN

Stimulation of the inflammatory reflex (IR) is a promising strategy for treating systemic inflammatory disorders. Recent studies suggest oral sodium bicarbonate (NaHCO3) as a potential activator of the IR, offering a safe and cost-effective treatment approach. However, the mechanisms underlying NaHCO3-induced anti-inflammatory effects remain unclear. We investigated whether oral NaHCO3's immunomodulatory effects are mediated by the splenic nerve. Female rats received NaHCO3 or water (H2O) for four days, and splenic immune markers were assessed using flow cytometry. NaHCO3 led to a significant increase (p < 0.05, and/or partial eta squared > 0.06) in anti-inflammatory markers, including CD11bc + CD206 + (M2-like) macrophages, CD3 + CD4 + FoxP3 + cells (Tregs), and Tregs/M1-like ratio. Conversely, proinflammatory markers, such as CD11bc + CD38 + TNFα + (M1-like) macrophages, M1-like/M2-like ratio, and SSChigh/SSClow ratio of FSChighCD11bc + cells, decreased in the spleen following NaHCO3 administration. These effects were abolished in spleen-denervated rats, suggesting the necessity of the splenic nerve in mediating NaHCO3-induced immunomodulation. Artificial neural networks accurately classified NaHCO3 and H2O treatment in sham rats but failed in spleen-denervated rats, highlighting the splenic nerve's critical role. Additionally, spleen denervation independently influenced Tregs, M2-like macrophages, Tregs/M1-like ratio, and CD11bc + CD38 + cells, indicating distinct effects from both surgery and treatment. Principal component analysis (PCA) further supported the separate effects. Our findings suggest that the splenic nerve transmits oral NaHCO3-induced immunomodulatory changes to the spleen, emphasizing NaHCO3's potential as an IR activator with therapeutic implications for a wide spectrum of systemic inflammatory conditions.


Asunto(s)
Bazo , Nervio Vago , Ratas , Femenino , Animales , Antiinflamatorios/farmacología , Inmunomodulación , Macrófagos
3.
Heart Fail Rev ; 29(2): 417-430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940727

RESUMEN

Device therapy is a nonpharmacological approach that presents a crucial advancement for managing patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF). This review investigated the impact of device-based interventions and emphasized their potential for optimizing treatment for this complex patient demographic. Cardiac resynchronization therapy, augmented by atrioventricular node ablation with His-bundle pacing or left bundle-branch pacing, is effective for enhancing cardiac function and establishing atrioventricular synchrony. Cardiac contractility modulation and vagus nerve stimulation represent novel strategies for increasing myocardial contractility and adjusting the autonomic balance. Left ventricular expanders have demonstrated short-term benefits in HFpEF patients but require more investigation for long-term effectiveness and safety, especially in patients with AF. Research gaps regarding complications arising from left ventricular expander implantation need to be addressed. Device-based therapies for heart valve diseases, such as transcatheter aortic valve replacement and transcatheter edge-to-edge repair, show promise for patients with AF and HFpEF, particularly those with mitral or tricuspid regurgitation. Clinical evaluations show that these device therapies lessen AF occurrence, improve exercise tolerance, and boost left ventricular diastolic function. However, additional studies are required to perfect patient selection criteria and ascertain the long-term effectiveness and safety of these interventions. Our review underscores the significant potential of device therapy for improving the outcomes and quality of life for patients with AF and HFpEF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/terapia , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/terapia , Volumen Sistólico/fisiología , Calidad de Vida , Resultado del Tratamiento , Función Ventricular Izquierda
4.
Mov Disord ; 39(2): 424-428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38111224

RESUMEN

BACKGROUND: Transcutaneous vagus nerve stimulation (VNS) showed early evidence of efficacy for the gait treatment of Parkinson's disease (PD). OBJECTIVES: Providing data on neurophysiological and clinical effects of transauricular VNS (taVNS). METHODS: Ten patients with recording deep brain stimulation (DBS) have been enrolled in a within participant design pilot study, double-blind crossover sham-controlled trial of taVNS. Subthalamic local field potentials (ß band power), Unified Parkinson's Disease Rating Scales (UPDRS), and a digital timed-up-and-go test (TUG) were measured and compared with real versus sham taVNS during medication-off/DBS-OFF condition. RESULTS: The left taVNS induced a reduction of the total ß power in the contralateral (ie, right) subthalamic nucleus and an improvement of TUG time, speed, and variability. The taVNS-induced ß reduction correlated with the improvement of gait speed. No major clinical changes were observed at UPDRS. CONCLUSIONS: taVNS is a promising strategy for the management of PD gait, deserving prospective trials of chronic neuromodulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Estimulación del Nervio Vago , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Estudios Prospectivos , Proyectos Piloto , Equilibrio Postural , Estudios de Tiempo y Movimiento , Marcha , Resultado del Tratamiento
5.
Epilepsia ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412361

RESUMEN

Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization.

6.
Mol Cell Biochem ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138750

RESUMEN

Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.

7.
Epilepsy Behav ; 159: 110008, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222605

RESUMEN

OBJECTIVE: To assess the impact of vagus nerve stimulation (VNS) on quality of life contributors such as rescue medications. METHODS: Using the seizure diary application SeizureTracker™ database, we examined trends in rescue administration frequency before and after the first recorded VNS magnet swipe in patients with drug-resistant epilepsy who had 1) At least one VNS magnet swipe recorded in the diary, and 2) Recorded usage of a benzodiazepine rescue medication (RM) within 90 days prior to the first swipe. A paired Wilcoxon rank-sum test was used to assess changes in RM usage frequency between 30-, 60-, 90-, 180- and 360-day intervals beginning 30 days after first magnet swipe. Longitudinal changes in RM usage frequency were assessed with a generalized estimating equation model. RESULTS: We analyzed data of 95 patients who met the inclusion criteria. Median baseline seizure frequency was 8.3 seizures per month, with median baseline rescue medication usage frequency of 2.1 administrations per month (SD 3.3). Significant reductions in rescue medication usage were observed in the 91 to 180 day interval after first VNS magnet swipe, and at 181 to 360 days and at 361 to 720 days, with the magnitude of reduction increasing over time. Decreases in rescue medication usage were sustained when controlling for patients who did not record rescue medication use after the first VNS magnet swipe (N=91). Significant predictors of reductions in rescue medication included baseline frequency of rescue medication usage and time after first VNS magnet swipe. SIGNIFICANCE: This retrospective analysis suggests that usage of rescue medications is reduced following the start of VNS treatment in patients with epilepsy, and that the magnitude of reduction may progressively increase over time.


Asunto(s)
Anticonvulsivantes , Epilepsia Refractaria , Convulsiones , Estimulación del Nervio Vago , Humanos , Estimulación del Nervio Vago/métodos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Epilepsia Refractaria/terapia , Epilepsia Refractaria/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Convulsiones/terapia , Convulsiones/tratamiento farmacológico , Adulto Joven , Benzodiazepinas/uso terapéutico , Adolescente , Anciano , Estudios Longitudinales , Resultado del Tratamiento , Calidad de Vida
8.
Epilepsy Behav ; 159: 109985, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181112

RESUMEN

Developmental and epileptic encephalopathies (DEEs) present significant treatment challenges due to frequent, drug-resistant seizures and comorbidities that impact quality of life. DEEs include both developmental encephalopathy from underlying pathology and epileptic encephalopathy where seizures exacerbate cognitive and behavioral impairments. Classification by syndrome and etiology is essential for therapy and prognosis, with common syndromes like infantile epileptic spasms syndrome and Dravet syndrome having specific first-line treatments. Etiologies are predominantly genetic, structural, or combined, with targeted therapies increasingly available. Surgery aims to improve seizure control but also may improve development, if the epileptic encephalopathy can be ameliorated. Timely intervention can reduce seizures and epileptiform discharges, maximizing developmental potential and allowing reduction in antiseizure medication. In cases requiring extensive resections, new deficits may be offset by developmental gains. Studies indicate that parents are generally willing to accept some deficits for significant seizure reduction.


Asunto(s)
Epilepsia , Humanos , Epilepsia/cirugía , Epilepsia/complicaciones , Espasmos Infantiles/cirugía , Procedimientos Neuroquirúrgicos/efectos adversos , Encefalopatías/complicaciones , Encefalopatías/cirugía
9.
Clin Auton Res ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363044

RESUMEN

PURPOSE: Vagus nerve stimulation (VNS) is emerging as a unique and potent intervention, particularly within neurology and psychiatry. The clinical value of VNS continues to grow, while the development of noninvasive options promises to change a landscape that is already quickly evolving. In this review, we highlight recent progress in the field and offer readers a glimpse of the future for this bright and promising modality. METHODS: We compiled a narrative review of VNS literature using PubMed and organized the discussion by disease states with approved indications (epilepsy, depression, obesity, post-stroke motor rehabilitation, headache), followed by a section highlighting novel, exploratory areas of VNS research. In each section, we summarized the current role, recent advancements, and future directions of VNS in the treatment of each disease. RESULTS: The field continues to gain appreciation for the clinical potential of this modality. VNS was initially developed for treatment-resistant epilepsy, with the first depression studies following shortly thereafter. Overall, VNS has gained approval or clearance in the treatment of medication-refractory epilepsy, treatment-resistant depression, obesity, migraine/cluster headache, and post-stroke motor rehabilitation. CONCLUSION: Noninvasive VNS represents an opportunity to bridge the translational gap between preclinical and clinical paradigms and may offer the same therapeutic potential as invasive VNS. Further investigation into how VNS parameters modulate behavior and biology, as well as how to translate noninvasive options into the clinical arena, are crucial next steps for researchers and clinicians studying VNS.

10.
Neurol Sci ; 45(5): 2289-2300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38063922

RESUMEN

BACKGROUND: Chemotherapy-induced painful peripheral neuropathy (CIPN) is a common adverse event in cancer patients, and there is still a lack of effective treatment. Transauricular vagal nerve stimulation (taVNS) is a minimally invasive treatment, but there are few reports regarding its efficacy for CIPN. OBJECTIVE: To investigate the efficacy and possible mechanism of taVNS in patients with CIPN. METHODS: Twenty-seven patients with CIPN were randomly divided into a taVNS group (n = 14) and a sham stimulation (SS) group (n = 13). A numerical rating scale (NRS) for pain, NCICTCAE 4.0 (neurotoxicity classification), quantitative sensory test (QST), Short-Form-Health Survey-12 (SF-12), and Athens Insomnia Scale (AIS) were administered before the intervention (D-10) and on the day after the intervention (D0), and the inflammatory cytokines in plasma were also measured. The NRS, NCI-CTCAE 4.0, SF-12, and AIS were administered again at D30 and D90. RESULTS: Compared with the SS group, the NRS and AIS in the taVNS group were significantly lower at D0. The impact lasted until D30. There were no statistically significant differences in the NRS and AIS between the 2 groups at D90. On D30, the mental component score of the SF-12 was significantly higher in the taVNS group than in the SS group. No adverse events were found. There was no significant difference in QST and plasma inflammatory cytokines between the 2 groups. CONCLUSION: taVNS can relieve chemotherapy-induced neuropathic pain in the short term, can improve sleep status and quality of life, and is expected to become a novel clinical treatment method for CIPN.


Asunto(s)
Antineoplásicos , Neuralgia , Estimulación del Nervio Vago , Humanos , Estimulación del Nervio Vago/métodos , Calidad de Vida , Neuralgia/terapia , Neuralgia/tratamiento farmacológico , Antineoplásicos/efectos adversos , Citocinas , Nervio Vago
11.
Sensors (Basel) ; 24(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794024

RESUMEN

An electroceutical is a medical device that uses electrical signals to control biological functions. It can be inserted into the human body as an implant and has several crucial advantages over conventional medicines for certain diseases. This research develops a new vagus nerve simulation (VNS) electroceutical through an innovative approach to overcome the communication limitations of existing devices. A phased array antenna with a better communication performance was developed and applied to the electroceutical prototype. In order to effectively respond to changes in communication signals, we developed the steering algorithm and firmware, and designed the smart communication protocol that operates at a low power that is safe for the patients. This protocol is intended to improve a communication sensitivity related to the transmission and reception distance. Based on this technical approach, the heightened effectiveness and safety of the prototype have been ascertained, with the actual clinical tests using live animals. We confirmed the signal attenuation performance to be excellent, and a smooth communication was achieved even at a distance of 7 m. The prototype showed a much wider communication range than any other existing products. Through this, it is conceivable that various problems due to space constraints can be resolved, hence presenting many benefits to the patients whose last resort to the disease is the VNS electroceutical.


Asunto(s)
Algoritmos , Nervio Vago , Nervio Vago/fisiología , Animales , Humanos , Prótesis e Implantes , Estimulación del Nervio Vago/métodos , Estimulación del Nervio Vago/instrumentación , Procesamiento de Señales Asistido por Computador
12.
Neuromodulation ; 27(2): 333-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36997454

RESUMEN

OBJECTIVES: Transcutaneous auricular vagus nerve stimulation (TaVNS) is a supplementary treatment for gastric symptoms resulting from dysrhythmias. The main objective of this study was to quantify the effects of 10, 40, and 80 Hz TaVNS and sham in healthy individuals in response to a 5-minute water-load (WL5) test. MATERIALS AND METHODS: Eighteen healthy volunteers aged between 21 and 55 years (body mass index: 27.1 ± 3.2) were recruited. Each subject fasted for up to eight hours and participated in four 95-minute sessions, which consisted of 30 fasted baseline, 30 minutes TaVNS, WL5, and 30 minutes post-WL5. Heart rate variability was assessed using sternal electrocardiogram. Body-surface gastric mapping and bloating (/10) were recorded. One-way ANOVA with post hoc Tukey test was performed to test the difference between TaVNS protocols in terms of frequency, amplitude, bloating scores, root mean square of the successive differences (RMSSD), and stress index (SI). RESULTS: On average, the subjects consumed 526 ± 160 mL of water, with volume ingested correlated to bloating (mean score 4.1 ± 1.8; r = 0.36, p = 0.029). In general, the reduction in frequency and rhythm stability during the post-WL5 period in sham was normalized by all three TaVNS protocols. Both 40- and 80-Hz protocols also caused increases in amplitude during the stim-only and/or post-WL5 periods. RMSSD increased during the 40-Hz protocol. SI increased during the 10-Hz protocol but decreased during the 40- and 80-Hz protocols. CONCLUSION: TaVNS proved effective in normalizing gastric dysrhythmias by WL5 in healthy subjects by altering both parasympathetic and sympathetic pathways.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Estimulación del Nervio Vago/efectos adversos , Estómago , Análisis de Varianza , Nervio Vago , Agua
13.
Neuromodulation ; 27(4): 766-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38340111

RESUMEN

INTRODUCTION: The antidepressant effect of N-methyl-D-aspartate antagonists is often short lasting, raising the question of the best maintenance strategy, which has remained unanswered. Vagus nerve stimulation (VNS) as a treatment option for refractory and chronic major depression was shown to reduce the need for maintenance treatment sessions in patients receiving electroconvulsive therapy. To our knowledge, there are no published data on the combination of VNS and esketamine in the literature. MATERIALS AND METHODS: This is a naturalistic prospective and retrospective observational study in patients treated with long-term VNS owing to difficult-to-treat depression. These patients also have received esketamine maintenance sessions in addition to short-term treatment. We have investigated the need for maintenance esketamine sessions per month after VNS implantation (number of sessions/number of months between visits), the change in depression severity (mean Montgomery-Asberg Depression Rating Scale [MADRS] score), and the number of hospitalizations per month (number of hospitalizations/number of postoperative observation months). Follow-up visits have been scheduled every three months after VNS implantation (follow-up period 12-24 months, mean 17). RESULTS: All patients (n = 8, mean age 53.1 years) had severe difficult-to-treat depression (DTD) (mean MADRS at baseline 30.9). Mean number of hospitalizations per month decreased from 0.17 to 0.11 after VNS implantation (p = 0.041, T = 2.030, df = 7). Mean MADRS at 12 months was 18.3 (40.8% MADRS reduction, p = 0.008, T = 3.146, df = 7). Six of eight patients were offered maintenance esketamine treatment. Mean number of esketamine treatment sessions per month and case decreased from 2.3 at the six-month visit to 0.8 at 12 months (p = 0.076, T = 1,690, df = 5) after VNS implantation. Termination of maintenance esketamine was possible in four cases after a mean of 11.5 months. CONCLUSIONS: Combination of esketamine and VNS was effective in patients with DTD to relieve disease severity and reduce hospitalizations. The need for esketamine treatment sessions decreased after 6 months of VNS. No safety concerns arose in this study regarding the combination treatment. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03320304.


Asunto(s)
Ketamina , Estimulación del Nervio Vago , Humanos , Estimulación del Nervio Vago/métodos , Femenino , Masculino , Ketamina/administración & dosificación , Ketamina/uso terapéutico , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Anciano , Terapia Combinada/métodos , Resultado del Tratamiento , Estudios Prospectivos , Trastorno Depresivo Resistente al Tratamiento/terapia , Antidepresivos/uso terapéutico , Antidepresivos/administración & dosificación , Estudios de Seguimiento
14.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L53-L63, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410021

RESUMEN

It is becoming increasingly appreciated that the nervous and immune systems communicate bidirectionally to regulate immunological outcomes in a variety of organs including the lung. Activation of neuronal signaling can be induced by inflammation, tissue damage, or pathogens to evoke or reduce immune cell activation in what has been termed a neuroimmune reflex. In the periphery, these reflexes include the cholinergic anti-inflammatory pathway, sympathetic reflex, and sensory nociceptor-immune cell pathways. Continual advances in neuroimmunology in peripheral organ systems have fueled small-scale clinical trials that have yielded encouraging results for a range of immunopathologies such as rheumatoid arthritis. Despite these successes, several limitations should give clinical investigators pause in the application of neural stimulation as a therapeutic for lung inflammation, especially if inflammation arises from a novel pathogen. In this review, the general mechanisms of each reflex, the evidence for these circuits in the control of lung inflammation, and the key knowledge gaps in our understanding of these neuroimmune circuits will be discussed. These limitations can be overcome not only through a better understanding of neuroanatomy but also through a systematic evaluation of stimulation parameters using immune activation in lung tissues as primary readouts. Our rapidly evolving understanding of the nervous and immune systems highlights the importance of communication between these cells in health and disease. This integrative approach has tremendous potential in the development of targeted therapeutics if specific challenges can be overcome.


Asunto(s)
Artritis Reumatoide , Neumonía , Humanos , Inflamación/metabolismo
15.
J Neurophysiol ; 130(1): 212-223, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377193

RESUMEN

Adding afferent vagus nerve stimulation to motor training via implanted electrodes can modify neuromotor adaptation depending on the stimulation timing. This study aimed to understand neuromotor adaptations when transcutaneous vagus nerve stimulation (tVNS) is applied at nonspecific timings during motor skill training in healthy humans. Twenty-four healthy young adults performed visuomotor training to match a complex force trajectory pattern with the index and little finger abduction forces concurrently. Participants were assigned to the tVNS group receiving tVNS at the tragus or the sham group receiving sham stimulation to the earlobe. The corresponding stimulations were applied at nonspecific timings throughout the training trials. Visuomotor tests were performed without tVNS or sham stimulation before and after training sessions across days. The reduction in the root mean square error (RMSE) against the trained force trajectory was attenuated in the tVNS group compared with the sham group, while its in-session reduction was not different between groups. The reduction of RMSE against an untrained trajectory pattern was not different between groups. No training effect was observed in corticospinal excitability or GABA-mediated intracortical inhibition. These findings suggest that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.NEW & NOTEWORTHY Adding vagus nerve stimulation via implanted electrodes during motor training can facilitate motor recovery in disabled animals and humans. No study examined the effect of transcutaneous vagus nerve stimulation (tVNS) during training on neuromotor adaptation in healthy humans. We have found that adding tVNS at nonspecific timings during motor skill training can compromise motor adaptation but not transfer in healthy humans.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Adulto Joven , Humanos , Nervio Vago/fisiología
16.
Epilepsia ; 64(4): 811-820, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36727550

RESUMEN

OBJECTIVE: There are three neurostimulation devices available to treat generalized epilepsy: vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). However, the choice between them is unclear due to lack of head-to-head comparisons. A systematic comparison of neurostimulation outcomes in generalized epilepsy has not been performed previously. The goal of this meta-analysis was to determine whether one of these devices is better than the others to treat generalized epilepsy. METHODS: Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic review of PubMed, Embase, and Web of Science was performed for studies reporting seizure outcomes following VNS, RNS, and DBS implantation in generalized drug-resistant epilepsy between the first pivotal trial study for each modality through August 2022. Specific search criteria were used for VNS ("vagus", "vagal", or "VNS" in the title and "epilepsy" or "seizure"), DBS ("deep brain stimulation", "DBS", "anterior thalamic nucleus", "centromedian nucleus", or "thalamic stimulation" in the title and "epilepsy" or "seizure"), and RNS ("responsive neurostimulation" or "RNS" in the title and "epilepsy" or "seizure"). From 4409 articles identified, 319 underwent full-text reviews, and 20 studies were included. Data were pooled using a random-effects model using the meta package in R. RESULTS: Sufficient data for meta-analysis were available from seven studies for VNS (n = 510) and nine studies for DBS (n = 87). Data from RNS (five studies, n = 18) were insufficient for meta-analysis. The mean (SD) follow-up durations were as follows: VNS, 39.1 (23.4) months; DBS, 23.1 (19.6) months; and RNS, 22.3 (10.6) months. Meta-analysis showed seizure reductions of 48.3% (95% confidence interval [CI] = 38.7%-57.9%) for VNS and 64.8% (95% CI = 54.4%-75.2%) for DBS (p = .02). SIGNIFICANCE: Our meta-analysis indicates that the use of DBS may lead to greater seizure reduction than VNS in generalized epilepsy. Results from RNS use are promising, but further research is required.


Asunto(s)
Núcleos Talámicos Anteriores , Epilepsia Refractaria , Epilepsia Generalizada , Epilepsia , Estimulación del Nervio Vago , Humanos , Epilepsia/terapia , Epilepsia Refractaria/terapia , Convulsiones/terapia , Epilepsia Generalizada/terapia , Estimulación del Nervio Vago/métodos , Resultado del Tratamiento
17.
Pharmacol Res ; 187: 106525, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36441036

RESUMEN

Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.


Asunto(s)
Reflejo , Reflejo/fisiología
18.
Epilepsy Behav ; 147: 109419, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37677901

RESUMEN

INTRODUCTION: Vagus nerve stimulation (VNS) is a neuromodulation therapy for drug-resistant epilepsy (DRE), refractory status epilepticus, and treatment-resistant depression. The lead is tunneled into the subcutaneous space and connected to the generator, which is usually implanted in a subcutaneous pocket below the clavicle. Surgical complications in the chest region include skin breakdown or infection. An alternative approach is to perform a subclavear subpectoral implantation. In our surgical series, we report a new aesthetic implantation method for VNS generators in children and young patients: the transaxillary subpectoral placement. MATERIALS AND METHODS: From May 2021 to May 2023, 10 vagus nerve stimulation generators were placed subpectorally with a transaxillary approach by the authors. We considered operative time, surgical complications such as blood loss, infections, device migration, pain, and adverse events at follow-up. RESULTS: In this surgical series, we reviewed all cases of subpectoral implantation of VNS generators in children and young adults at our institution in the last 2 years. All patients were treated with subpectoral Sentiva 1000 (Livanova PLC) insertion with axillary access by a neurosurgeon and a pediatric surgeon. The operative time was slightly longer compared to the traditional subcutaneous implant. All generators reported impedances within the optimal range. Blood loss was not significant and no other perioperative complications were reported. Patients and families were highly satisfied with the outcomes in terms of comfort and aesthetic results after surgery and at the last follow-up. No cases of infection occurred, and no malfunctions or displacements of the generator were registered at clinical follow-up. CONCLUSION: The transaxillary subpectoral placement of theVNS generator is an aesthetic and anatomic approach, which provides several benefits to children and young adults.


Asunto(s)
Epilepsia Refractaria , Estado Epiléptico , Estimulación del Nervio Vago , Niño , Humanos , Adulto Joven , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/etiología , Estudios Retrospectivos , Estado Epiléptico/etiología , Resultado del Tratamiento , Nervio Vago/fisiología , Estimulación del Nervio Vago/métodos
19.
Epilepsy Behav ; 142: 109182, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972642

RESUMEN

OBJECTIVES: Different neurostimulation modalities are available to treat drug-resistant focal epilepsy when surgery is not an option including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS). Head-to-head comparisons of efficacy do not exist between them nor are likely to be available in the future. We performed a meta-analysis on VNS, RNS, and DBS outcomes to compare seizure reduction efficacy for focal epilepsy. METHODS: We systematically reviewed the literature for reported seizure outcomes following implantation with VNS, RNS, and DBS in focal-onset seizures and performed a meta-analysis. Prospective or retrospective clinical studies were included. RESULTS: Sufficient data were available at years one (n = 642, two (n = 480), and three (n = 385) for comparing the three modalities with each other. Seizure reduction for the devices at years one, two, and three respectively were: RNS: 66.3%, 56.0%, 68.4%; DBS- 58.4%, 57.5%, 63.8%; VNS 32.9%, 44.4%, 53.5%. Seizure reduction at year one was greater for RNS (p < 0.01) and DBS (p < 0.01) compared to VNS. CONCLUSIONS: Our findings indicate the seizure reduction efficacy of RNS is similar to DBS, and both had greater seizure reductions compared to VNS in the first-year post-implantation, with the differences diminishing with longer-term follow-up. SIGNIFICANCE: The results help guide neuromodulation treatment in eligible patients with drug-resistant focal epilepsy.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsias Parciales , Estimulación del Nervio Vago , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Estimulación Encefálica Profunda/métodos , Epilepsias Parciales/terapia , Epilepsia Refractaria/terapia , Convulsiones/terapia , Estimulación del Nervio Vago/métodos , Resultado del Tratamiento
20.
Health Qual Life Outcomes ; 21(1): 85, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563643

RESUMEN

BACKGROUND: Vitiligo is reported to affect 2% of the world's population and has a significant impact on health related quality of life (HRQoL). The relationship between HRQoL and clinical outcomes used in vitiligo require further examination. Mapping condition specific measures of HRQoL: vitiligo specific quality of life instrument (VitiQoL), vitiligo noticeability scale (VNS) and vitiligo re-pigmentation scores (RPS) to the EQ-5D have not yet been reported. METHODS: Data collected from a randomised clinical trial (HI-Light) in vitiligo was used to develop mapping algorithms for the EQ-5D-5 L and the relationship between HRQoL, clinical outcomes and EQ-5D were investigated. Two EQ-5D-5 L value sets (Van Hout and Alava) using linear and non-linear models were considered. Logistic regression models were used to model the probability of vitiligo noticeability (VNS) in terms of RPS, EQ-5D and VitiQoL scores. RESULTS: Mapping from RPS appeared to perform better followed by VNS for the Alava crosswalks using polynomial models: Mean observed vs. predicted utilities of 0.9008 (0.005) vs. 0.8984 (0.0004) were observed for RPS. For VNS, mean observed vs. predicted utilities of 0.9008 (0.005) vs. 0.8939 (0.0003) were observed. For VitiQoL, mean observed vs. predicted utilities of 0.9008 (0.005) vs. 0.8912 (0.0002) were observed. For patients with the least re-pigmentation (RPS < 25%), a Total VitiQoL score of about 20 points gives around an 18% chance of vitiligo being no longer or a lot less noticeable. CONCLUSION: The algorithm based on RPS followed by VNS performed best. The relationship between effects from vitiligo specific HRQoL instruments and clinical RPS was established allowing for plausible clinically relevant differences to be identified, although further work is required in this area.


Asunto(s)
Calidad de Vida , Vitíligo , Humanos , Vitíligo/terapia , Encuestas y Cuestionarios , Modelos Logísticos , Algoritmos , Pigmentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA