Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Appl Microbiol ; 131(5): 2416-2432, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33884699

RESUMEN

AIMS: Since most phosphate solubilizing bacteria (PSB) also produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase, we investigated if there was an association between these two plant growth-promoting properties under in vitro conditions. METHODS AND RESULTS: A total of 841 bacterial isolates were obtained using selective and enrichment isolation methods. ACC deaminase was investigated using in vitro methods and by sequencing the acdS gene. The effect of ACC deaminase on P solubilization was investigated further using five efficient PSB. ACC deaminase production ability was found amongst a wide range of bacteria belonging to the genera Bacillus, Burkholderia, Pseudomonas and Variovorax. The amount of ACC deaminase produced by PSB was significantly associated with the liberation of Pi from Ca-P when ACC was the sole N source. Ca-P solubilization was associated with the degree of acidification of the medium. Additionally, the P solubilization potential of PSB with (NH4 )2 SO4 was determined by the type of carboxylates produced. An in-planta experiment was conducted using Burkholderia sp. 12F on chickpea cv. Genesis-863 in sand : vermiculite (1 : 1 v/v) amended with rock phosphate and inoculation of this efficient PSB significantly increased growth, nodulation and P uptake of chickpea fertilized with rock phosphate. CONCLUSION: ACC deaminase activity influenced the capacity of PSB to solubilize P from Ca-P when ACC was the sole N source and Burkholderia sp. 12F promoted the chickpea-Mesorhizobium symbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY: ACC deaminase activity could enhance the P solubilizing activity of rhizobacteria that improve plant growth.


Asunto(s)
Burkholderia , Cicer , Liasas de Carbono-Carbono/genética , Fosfatos , Raíces de Plantas
2.
Arch Microbiol ; 198(8): 793-801, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27209414

RESUMEN

The plant growth-promoting rhizobacteria have developed many different (indirect and direct) mechanisms that have a positive effect on plant growth and development. Strains isolated from Astragalus cicer and Astragalus glycyphyllos root nodules were investigated for their plant growth-promoting properties such as production of indole-3-acetic acid (IAA) and siderophores, phosphate solubilization, ACC deaminase activity, and tolerance to heavy metals. IAA production and P-solubilization were frequent features in the analysed strains, while siderophores were not produced by any of them. In this work, we investigated the presence of the acdS genes and ACC deaminase activities in Astragalaus cicer and A. glycyphyllos microsymbionts, classified within the genus Mesorhizobium. The results demonstrated that the acdS gene is widespread in the genome of Astragalus sp. microsymbionts; however, none of the tested strains showed ACC deaminase activity. The acdS gene sequence similarity of the analysed strains to each other was in the range from 84 to 99 %. On the phylogram of acdS gene sequences of milkvetch, the symbionts clustered tightly with the genus Mesorhizobium bacteria.


Asunto(s)
Planta del Astrágalo/microbiología , Liasas de Carbono-Carbono/metabolismo , Mesorhizobium/aislamiento & purificación , Mesorhizobium/metabolismo , Liasas de Carbono-Carbono/genética , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Mesorhizobium/genética , Metales Pesados/metabolismo , Desarrollo de la Planta , Raíces de Plantas/microbiología , Rhizobium/genética , Rhizobium/aislamiento & purificación , Sideróforos/metabolismo , Simbiosis
3.
Front Microbiol ; 13: 824437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770171

RESUMEN

Water deficit tolerance is critical for plant fitness and survival, especially when successive drought events happen. Specific soil microorganisms are however able to improve plant tolerance to stresses, such as those displaying a 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Microorganisms adapted to dry conditions can be selected by plants over time because of properties such as sporulation, substrate preference, or cell-wall thickness. However, the complexity and interconnection between abiotic factors, like drought or soil management, and biotic factors, like plant species identity, make it difficult to elucidate the general selection processes of such microorganisms. Using a pot experiment in which wheat and barley were grown on conventional and organic farming soils, we determined the effect of water deficit history on soil microorganisms by comparing single and successive events of water limitation. The analysis showed that water deficit strongly impacts the composition of both the total microbial community (16S rRNA genes) and one of ACC deaminase-positive (acdS +) microorganisms in the rhizosphere. In contrast, successive dry conditions moderately influence the abundance and diversity of both communities compared to a single dry event. We revealed interactive effects of the farming soil type and the water deficit conditioning treatment. Indeed, possibly due to better nutrient status, plants grown on soils from conventional farming showed higher growth and were able to select more adapted microbial taxa. Some of them are already known for their plant-beneficial properties like the Actinobacteria Streptomyces, but interestingly, some Proteobacteria were also enriched after a water deficit history under conventional farming. Our approach allowed us to identify key microbial taxa promoting drought adaptation of cereals, thus improving our understanding of drought effects on plant-microbe interactions.

4.
3 Biotech ; 11(12): 514, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34926112

RESUMEN

Salinity stress is one of the most serious environmental stresses which limit plant growth, development and productivity. In this study, we screened 25 bacterial isolates based on the biochemical activity of ACC deaminase. Two potent PGPR namely Bacillus marisflavi (CHR JH 203) and Bacillus cereus (BST YS1_42) having the highest ACC deaminase (ACCD) activity were selected for further analyses such as polymerase chain reaction (PCR), salt tolerance assay, expression analysis, antioxidant assay, etc. The structural gene for ACCD activity was further confirmed by PCR showing the amplicon size ~ 800 bp. The acdS positive isolates exhibited optimum growth at 3% w/v (NaCl), indicating its ability to survive and thrive in induced saline soil. Inoculation of acdS + strain on pea plants was found to be efficient and ameliorated the induced NaCl-stress by enhancing the various parameters like plant-biomass, carbohydrates, reducing sugars, protein, chlorophylls, phenol, flavonoids content and increasing antioxidants enzymes levels in plants. Moreover, the expression of ROS scavenging genes (PsSOD, PsCAT, PsPOX, PsNOS, PsAPX, PsChla/bBP), defense genes and cell rescue genes (PsPRP, PsMAPK, PsFDH) were analyzed. Inoculated plants exhibited a higher gene expression level and salt tolerance under 1%NaCl concentration. Thus, our results indicate that CHR JH 203 and BST YS1_42 strain showed the highest plant growth-promoting attributes could be used as bio-inoculants for crops under saline stress in the field towards sustainable crop development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03047-5.

5.
Chemosphere ; 264(Pt 2): 128513, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33059278

RESUMEN

Understanding the mechanisms underlying plant-rhizobacteria interactions in field-contaminated soils is crucial for designing effective rhizoremediation strategies. This study aimed to test the ability of four native herb species to remove polycyclic aromatic hydrocarbons (PAHs) and to analyze their associated bacterial community structures and functional genes within the rhizosphere from the abandoned site of a former Shenyang coking plant in China; the bulk soil was collected as control. All four species removed PAHs, of which the rhizosphere of Kochia scoparia had the highest PAH removal rate (almost 30.2%). Although the composition of the bacterial community within the rhizosphere varied among plant species, all plant species could promote the growth of Sphingomonas, Pedomicrobium, Rhodoplanes, Blastoccus, Mycobacterium, Devosia, and Pseudomonas, and their relative abundance positively correlated with the removal rates of PAHs, soil moisture, and total carbon/total nitrogen in the rhizosphere. Moreover, the activities of 1-aminocyclopropane-1 -carboxylic deaminase gene and Gram-negative ring-hydroxylating dioxygenase gene significantly (P < 0.05) increased compared with those in the control, and these activities had a strong positive correlation with the removal rates of PAHs [r = 0.759 (P < 0.01) and 0.87 (P < 0.01), respectively]. The findings of this study indicated that PAHs were the main factor driving the composition of beneficial bacteria in PAH rhizodegradation, and the PAH rhizoremediation of native plants grown in coking plant can be controlled though altering soil properties.


Asunto(s)
Coque , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacterias/genética , Biodegradación Ambiental , China , Hidrocarburos Policíclicos Aromáticos/análisis , Rizosfera , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA