Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974733

RESUMEN

The use of satellite-borne large-footprint LiDAR (light detection and ranging) systems allows for the acquisition of forest monitoring data. This paper mainly describes the design, use, operating principles, installation and data properties of the new Laser Vegetation Detecting Sensor (LVDS), a LiDAR system designed and developed at the Academy of Forest Inventory and Planning (AFIP) and the Beijing Institute of Telemetry (BIT). Data from LVDS were used to calculate the mean height of forest trees on sample plots using data collected in the Hunan province of China. The results show that the full waveform data obtained by LVDS has the ability to accurately characterize forest height. The mean absolute percentage error of mean forest height per plot in flat areas was 6.8%, with a mean absolute deviation of 0.78 m. The airborne LVDS system provides prototype data sets and a platform for instrument proof-of-concept studies for China's Terrestrial Ecosystem Carbon Monitoring (TECM) mission, which is an Earth remote sensing satellite due for launch in 2020. The information produced by LVDS allows for forest structure studies with high accuracy and coverage of large areas.


Asunto(s)
Ecosistema , Bosques , Tecnología de Sensores Remotos/métodos , Árboles/crecimiento & desarrollo , Biomasa , Carbono/química , China , Humanos , Rayos Láser , Luz , Telemetría
2.
Sensors (Basel) ; 16(8)2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27537896

RESUMEN

Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).


Asunto(s)
Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Lagos , Agua/química , Calidad del Agua
3.
Sensors (Basel) ; 16(8)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27548174

RESUMEN

For decades detection and monitoring of forest and other wildland fires has relied heavily on aircraft (and satellites). Technical advances and improved affordability of both sensors and sensor platforms promise to revolutionize the way aircraft detect, monitor and help suppress wildfires. Sensor systems like hyperspectral cameras, image intensifiers and thermal cameras that have previously been limited in use due to cost or technology considerations are now becoming widely available and affordable. Similarly, new airborne sensor platforms, particularly small, unmanned aircraft or drones, are enabling new applications for airborne fire sensing. In this review we outline the state of the art in direct, semi-automated and automated fire detection from both manned and unmanned aerial platforms. We discuss the operational constraints and opportunities provided by these sensor systems including a discussion of the objective evaluation of these systems in a realistic context.


Asunto(s)
Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos/métodos , Incendios Forestales , Aeronaves , Monitoreo del Ambiente/instrumentación , Bosques , Humanos , Tecnología de Sensores Remotos/tendencias , Temperatura
4.
J Geophys Res Biogeosci ; 127(9): e2022JG007026, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36247363

RESUMEN

Biodiversity monitoring is an almost inconceivable challenge at the scale of the entire Earth. The current (and soon to be flown) generation of spaceborne and airborne optical sensors (i.e., imaging spectrometers) can collect detailed information at unprecedented spatial, temporal, and spectral resolutions. These new data streams are preceded by a revolution in modeling and analytics that can utilize the richness of these datasets to measure a wide range of plant traits, community composition, and ecosystem functions. At the heart of this framework for monitoring plant biodiversity is the idea of remotely identifying species by making use of the 'spectral species' concept. In theory, the spectral species concept can be defined as a species characterized by a unique spectral signature and thus remotely detectable within pixel units of a spectral image. In reality, depending on spatial resolution, pixels may contain several species which renders species-specific assignment of spectral information more challenging. The aim of this paper is to review the spectral species concept and relate it to underlying ecological principles, while also discussing the complexities, challenges and opportunities to apply this concept given current and future scientific advances in remote sensing.

5.
Sensors (Basel) ; 9(9): 7132-49, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22399989

RESUMEN

The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm.

6.
Sensors (Basel) ; 8(1): 236-255, 2008 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-27879706

RESUMEN

Reducing the risk of oil spill disasters is essential for protecting the environmentand reducing economic losses. Oil spill surveillance constitutes an important component ofoil spill disaster management. Advances in remote sensing technologies can help to identifyparties potentially responsible for pollution and to identify minor spills before they causewidespread damage. Due to the large number of sensors currently available for oil spillsurveillance, there is a need for a comprehensive overview and comparison of existingsensors. Specifically, this paper examines the characteristics and applications of differentsensors. A better understanding of the strengths and weaknesses of oil spill surveillancesensors will improve the operational use of these sensors for oil spill response andcontingency planning. Laser fluorosensors were found to be the best available sensor for oilspill detection since they not only detect and classify oil on all surfaces but also operate ineither the day or night. For example, the Scanning Laser Environmental AirborneFluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance.However, no single sensor was able to provide all information required for oil spillcontingency planning. Hence, combinations of sensors are currently used for oil spillsurveillance. Specifically, satellite sensors are used for preliminary oil spill assessmentwhile airborne sensors are used for detailed oil spill analysis. While satellite remote sensingis not suitable for tactical oil spill planning it can provide a synoptic coverage of theaffected area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA