Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.802
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688133

RESUMEN

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Animales , Cromatina , Exones , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Empalme del ARN
2.
Cell ; 181(7): 1547-1565.e15, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32492405

RESUMEN

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Potenciales de Acción/fisiología , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Femenino , Células HEK293 , Homeostasis/fisiología , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Antígeno Ventral Neuro-Oncológico , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
3.
Cell ; 173(3): 665-676.e14, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29551272

RESUMEN

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Ingeniería Genética/métodos , Ingeniería de Proteínas/métodos , ARN/análisis , Empalme Alternativo , Animales , Proteínas Bacterianas/metabolismo , Diferenciación Celular , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Ratones , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , Ruminococcus , Análisis de Secuencia de ARN , Transcriptoma
4.
Cell ; 174(3): 536-548.e21, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29961578

RESUMEN

The DNA-binding protein REST forms complexes with histone deacetylases (HDACs) to repress neuronal genes in non-neuronal cells. In differentiating neurons, REST is downregulated predominantly by transcriptional silencing. Here we report that post-transcriptional inactivation of REST by alternative splicing is required for hearing in humans and mice. We show that, in the mechanosensory hair cells of the mouse ear, regulated alternative splicing of a frameshift-causing exon into the Rest mRNA is essential for the derepression of many neuronal genes. Heterozygous deletion of this alternative exon of mouse Rest causes hair cell degeneration and deafness, and the HDAC inhibitor SAHA (Vorinostat) rescues the hearing of these mice. In humans, inhibition of the frameshifting splicing event by a novel REST variant is associated with dominantly inherited deafness. Our data reveal the necessity for alternative splicing-dependent regulation of REST in hair cells, and they identify a potential treatment for a group of hereditary deafness cases.


Asunto(s)
Sordera/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Empalme Alternativo/genética , Animales , Línea Celular , Exones , Regulación de la Expresión Génica/genética , Células HEK293 , Células Ciliadas Auditivas/fisiología , Audición/genética , Audición/fisiología , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas , Empalme del ARN/genética , Proteínas Represoras/fisiología , Factores de Transcripción , Vorinostat/farmacología
5.
Cell ; 170(2): 324-339.e23, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28709000

RESUMEN

Alternative splicing (AS) patterns have diverged rapidly during vertebrate evolution, yet the functions of most species- and lineage-specific splicing events are not known. We observe that mammalian-specific AS events are enriched in transcript sequences encoding intrinsically disordered regions (IDRs) of proteins, in particular those containing glycine/tyrosine repeats that mediate formation of higher-order protein assemblies implicated in gene regulation and human disease. These evolutionary changes impact nearly all members of the hnRNP A and D families of RNA binding proteins. Regulation of these events requires formation of unusual, long-range mammalian-specific RNA duplexes. Differential inclusion of the alternative exons controls the formation of tyrosine-dependent multivalent hnRNP assemblies that, in turn, function to globally regulate splicing. Together, our results demonstrate that AS control of IDR-mediated interactions between hnRNPs represents an important and recurring mechanism underlying splicing regulation. Furthermore, this mechanism has expanded the regulatory capacity of mammalian cells.


Asunto(s)
Empalme Alternativo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Mamíferos/genética , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Precursores del ARN/metabolismo , Alineación de Secuencia , Vertebrados/genética , Vertebrados/metabolismo
6.
Cell ; 169(1): 72-84.e13, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340352

RESUMEN

Multiple sclerosis (MS) is an autoimmune disorder where T cells attack neurons in the central nervous system (CNS) leading to demyelination and neurological deficits. A driver of increased MS risk is the soluble form of the interleukin-7 receptor alpha chain gene (sIL7R) produced by alternative splicing of IL7R exon 6. Here, we identified the RNA helicase DDX39B as a potent activator of this exon and consequently a repressor of sIL7R, and we found strong genetic association of DDX39B with MS risk. Indeed, we showed that a genetic variant in the 5' UTR of DDX39B reduces translation of DDX39B mRNAs and increases MS risk. Importantly, this DDX39B variant showed strong genetic and functional epistasis with allelic variants in IL7R exon 6. This study establishes the occurrence of biological epistasis in humans and provides mechanistic insight into the regulation of IL7R exon 6 splicing and its impact on MS risk.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Epistasis Genética , Subunidad alfa del Receptor de Interleucina-7/genética , Empalme del ARN , ARN Helicasas DEAD-box/genética , Exones , Células HeLa , Humanos , Esclerosis Múltiple/genética , Biosíntesis de Proteínas , ARN Interferente Pequeño/metabolismo , Linfocitos T/inmunología
7.
Cell ; 170(2): 312-323.e10, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28708999

RESUMEN

Proteins of the Rbfox family act with a complex of proteins called the Large Assembly of Splicing Regulators (LASR). We find that Rbfox interacts with LASR via its C-terminal domain (CTD), and this domain is essential for its splicing activity. In addition to LASR recruitment, a low-complexity (LC) sequence within the CTD contains repeated tyrosines that mediate higher-order assembly of Rbfox/LASR and are required for splicing activation by Rbfox. This sequence spontaneously aggregates in solution to form fibrous structures and hydrogels, suggesting an assembly similar to the insoluble cellular inclusions formed by FUS and other proteins in neurologic disease. Unlike the pathological aggregates, we find that assembly of the Rbfox CTD plays an essential role in its normal splicing function. Rather than simple recruitment of individual regulators to a target exon, alternative splicing choices also depend on the higher-order assembly of these regulators within the nucleus.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Proteínas del Citoesqueleto/química , Humanos , Ratones , Dominios Proteicos , Empalme del ARN , Alineación de Secuencia , Factores de Empalme Serina-Arginina/metabolismo
8.
Cell ; 169(5): 824-835.e14, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525753

RESUMEN

Maintenance of proper levels of the methyl donor S-adenosylmethionine (SAM) is critical for a wide variety of biological processes. We demonstrate that the N6-adenosine methyltransferase METTL16 regulates expression of human MAT2A, which encodes the SAM synthetase expressed in most cells. Upon SAM depletion by methionine starvation, cells induce MAT2A expression by enhanced splicing of a retained intron. Induction requires METTL16 and its methylation substrate, a vertebrate conserved hairpin (hp1) in the MAT2A 3' UTR. Increasing METTL16 occupancy on the MAT2A 3' UTR is sufficient to induce efficient splicing. We propose that, under SAM-limiting conditions, METTL16 occupancy on hp1 increases due to inefficient enzymatic turnover, which promotes MAT2A splicing. We further show that METTL16 is the long-unknown methyltransferase for the U6 spliceosomal small nuclear RNA (snRNA). These observations suggest that the conserved U6 snRNA methyltransferase evolved an additional function in vertebrates to regulate SAM homeostasis.


Asunto(s)
Intrones , Metionina Adenosiltransferasa/genética , Metiltransferasas/metabolismo , Empalme del ARN , S-Adenosilmetionina/metabolismo , Animales , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Secuencias Invertidas Repetidas , Metionina Adenosiltransferasa/química , Metilación , Metiltransferasas/química , Schizosaccharomyces/metabolismo
9.
Mol Cell ; 84(14): 2634-2647.e9, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964321

RESUMEN

DNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway. CCAR1 loss abrogated FANCA protein without substantial reduction in the level of its mRNA or that of other FA genes. We instead found that CCAR1 prevents inclusion of a poison exon in FANCA. Transcriptomic analysis revealed that the CCAR1 splicing modulatory activity is not limited to FANCA, and it instead regulates widespread changes in alternative splicing that would damage coding sequences in mouse and human cells. CCAR1 therefore has an unanticipated function as a splicing fidelity factor.


Asunto(s)
Empalme Alternativo , Proteína del Grupo de Complementación A de la Anemia de Fanconi , Humanos , Animales , Ratones , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Reparación del ADN por Recombinación , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Células HEK293 , Exones , Sistemas CRISPR-Cas , Reparación del ADN , Células HeLa , Daño del ADN
10.
Mol Cell ; 84(8): 1496-1511.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38537639

RESUMEN

Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U2 , Empalmosomas , Animales , Empalmosomas/genética , Empalmosomas/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Intrones/genética , Cromatina/genética , Cromatina/metabolismo , Empalme del ARN , Precursores del ARN/metabolismo , Mamíferos/metabolismo
11.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39025073

RESUMEN

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Ciclo Celular , Proteína del Grupo de Complementación A de la Anemia de Fanconi , Anemia de Fanconi , Empalme del ARN , Factor de Empalme U2AF , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Reparación del ADN , Endodesoxirribonucleasas , Exones , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Unión Proteica , Precursores del ARN/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Empalmosomas/metabolismo , Empalmosomas/genética , Factor de Empalme U2AF/metabolismo , Factor de Empalme U2AF/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo
12.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917794

RESUMEN

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Asunto(s)
Exones , Humanos , Exones/genética , Sistemas CRISPR-Cas , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Aptitud Genética , Células HEK293 , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Sitios de Empalme de ARN , Mutación , Regulación de la Expresión Génica , Empalme Alternativo
13.
Mol Cell ; 84(19): 3810-3825.e10, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39303720

RESUMEN

Cys2-His2 zinc-finger proteins (C2H2-ZNFs) constitute the largest class of DNA-binding transcription factors (TFs) yet remain largely uncharacterized. Although certain family members, e.g., GTF3A, have been shown to bind both DNA and RNA, the extent to which C2H2-ZNFs interact with-and regulate-RNA-associated processes is not known. Using UV crosslinking and immunoprecipitation (CLIP), we observe that 148 of 150 analyzed C2H2-ZNFs bind directly to RNA in human cells. By integrating CLIP sequencing (CLIP-seq) RNA-binding maps for 50 of these C2H2-ZNFs with data from chromatin immunoprecipitation sequencing (ChIP-seq), protein-protein interaction assays, and transcriptome profiling experiments, we observe that the RNA-binding profiles of C2H2-ZNFs are generally distinct from their DNA-binding preferences and that they regulate a variety of post-transcriptional processes, including pre-mRNA splicing, cleavage and polyadenylation, and m6A modification of mRNA. Our results thus define a substantially expanded repertoire of C2H2-ZNFs that bind RNA and provide an important resource for elucidating post-transcriptional regulatory programs.


Asunto(s)
Unión Proteica , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc CYS2-HIS2/genética , Procesamiento Postranscripcional del ARN , Empalme del ARN , Sitios de Unión , ARN/metabolismo , ARN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Secuenciación de Inmunoprecipitación de Cromatina , Poliadenilación , Regulación de la Expresión Génica
14.
Mol Cell ; 84(19): 3656-3666, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366353

RESUMEN

Proper gene expression requires the collaborative effort of multiple macromolecular machines to produce functional messenger RNA. As RNA polymerase II (RNA Pol II) transcribes DNA, the nascent pre-messenger RNA is heavily modified by other complexes such as 5' capping enzymes, the spliceosome, the cleavage, and polyadenylation machinery as well as RNA-modifying/editing enzymes. Recent evidence has demonstrated that pre-mRNA splicing and 3' end cleavage can occur on similar timescales as transcription and significantly cross-regulate. In this review, we discuss recent advances in co-transcriptional processing and how it contributes to gene regulation. We highlight how emerging areas-including coordinated splicing events, physical interactions between the RNA synthesis and modifying machinery, rapid and delayed splicing, and nuclear organization-impact mRNA isoforms. Coordination among RNA-processing choices yields radically different mRNA and protein products, foreshadowing the likely regulatory importance of co-transcriptional RNA folding and co-transcriptional modifications that have yet to be characterized in detail.


Asunto(s)
Precursores del ARN , Empalme del ARN , ARN Mensajero , Empalmosomas , Transcripción Genética , Precursores del ARN/metabolismo , Precursores del ARN/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Animales , Empalmosomas/metabolismo , Empalmosomas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica
15.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38452766

RESUMEN

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Asunto(s)
Empalme Alternativo , Complejo Represivo Polycomb 2 , Animales , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
16.
Mol Cell ; 84(13): 2573-2589.e5, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917795

RESUMEN

Efficient targeted control of splicing is a major goal of functional genomics and therapeutic applications. Guide (g)RNA-directed, deactivated (d)Cas CRISPR enzymes fused to splicing effectors represent a promising strategy due to the flexibility of these systems. However, efficient, specific, and generalizable activation of endogenous exons using this approach has not been previously reported. By screening over 300 dCasRx-splicing factor fusion proteins tethered to splicing reporters, we identify dCasRx-RBM25 as a potent activator of exons. Moreover, dCasRx-RBM25 efficiently activates the splicing of ∼90% of targeted endogenous alternative exons and displays high on-target specificity. Using gRNA arrays for combinatorial targeting, we demonstrate that dCasRx-RBM25 enables multiplexed activation and repression of exons. Using this feature, the targeting of neural-regulated exons in Ptpb1 and Puf60 in embryonic stem cells reveals combinatorial effects on downstream alternative splicing events controlled by these factors. Collectively, our results enable versatile, combinatorial exon-resolution functional assays and splicing-directed therapeutic applications.


Asunto(s)
Empalme Alternativo , Sistemas CRISPR-Cas , Exones , Factores de Empalme de ARN , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células HEK293 , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Animales , Ratones
17.
Mol Cell ; 83(23): 4222-4238.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065061

RESUMEN

Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Exones/genética , Intrones , ARN
18.
Mol Cell ; 83(24): 4479-4493.e6, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38096826

RESUMEN

4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.


Asunto(s)
Empalme del ARN , ARN Pequeño no Traducido , Ratones , Animales , Empalme del ARN/genética , Exones/genética , Retroelementos/genética , Codón sin Sentido , Empalme Alternativo
19.
Mol Cell ; 83(21): 3801-3817.e8, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922872

RESUMEN

Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.


Asunto(s)
Histonas , ARN Polimerasa II , Humanos , Histonas/genética , Histonas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Transcripción Genética , Cromatina/genética , Empalme Alternativo
20.
Mol Cell ; 83(7): 1165-1179.e11, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944332

RESUMEN

SF3B1 is the most mutated splicing factor (SF) in myelodysplastic syndromes (MDSs), which are clonal hematopoietic disorders with variable risk of leukemic transformation. Although tumorigenic SF3B1 mutations have been extensively characterized, the role of "non-mutated" wild-type SF3B1 in cancer remains largely unresolved. Here, we identify a conserved epitranscriptomic program that steers SF3B1 levels to counteract leukemogenesis. Our analysis of human and murine pre-leukemic MDS cells reveals dynamic regulation of SF3B1 protein abundance, which affects MDS-to-leukemia progression in vivo. Mechanistically, ALKBH5-driven 5' UTR m6A demethylation fine-tunes SF3B1 translation directing splicing of central DNA repair and epigenetic regulators during transformation. This impacts genome stability and leukemia progression in vivo, supporting an integrative analysis in humans that SF3B1 molecular signatures may predict mutational variability and poor prognosis. These findings highlight a post-transcriptional gene expression nexus that unveils unanticipated SF3B1-dependent cancer vulnerabilities.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , Carcinogénesis/genética , Leucemia/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA