Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Clin Microbiol Rev ; : e0013323, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995034

RESUMEN

SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.

2.
Microb Pathog ; 169: 105640, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716926

RESUMEN

Onychomycosis (OM) is a fungal infection, responsible for about 50% of nail diseases. OM has been attributed to the ability of fungi to naturally organize themselves into biofilms on nail surfaces. However, little is known about the exact role of the biofilm in the etiopathogenesis of OM, as well as its influence in the permeation of a topical treatment. The objectives of this study were to review the literature for topical OM treatments in clinical trials, assess the efficiency of these treatments, and discuss factors that could affect the success of these treatments. First, a systematic search of articles published in the MEDLINE database (PubMed) between January 2010 and December 2019 was conducted, focusing on drugs under clinical trials for the topical treatment of OM. Of the publications selected, it was clear that none of them had considered the fungi organized in biofilm. Therefore, we reflected on some important variables involved in OM, such as the nail structure and the mechanism of fungal invasion. Some methods, such as histopathologic analysis and spectroscopy techniques, were found to be effective in the detection of nail biofilm, and could be used in future drug permeation studies. This review allowed us to conclude that novel antifungals for the topical treatment of OM must consider the drug to permeate through biofilm. Natural products, such as propolis, seem strong candidates in this respect.


Asunto(s)
Enfermedades de la Uña , Onicomicosis , Administración Tópica , Antifúngicos/química , Humanos , Enfermedades de la Uña/tratamiento farmacológico , Uñas , Onicomicosis/tratamiento farmacológico
3.
Front Cell Infect Microbiol ; 14: 1395577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145303

RESUMEN

Introduction: Biofilm-associated infections persist as a therapeutic challenge in contemporary medicine. The efficacy of antibiotic therapies is ineffective in numerous instances, necessitating a heightened focus on exploring novel anti-biofilm medical strategies. Among these, iminosugars emerge as a distinctive class of compounds displaying promising biofilm inhibition properties. Methods: This study employs an in vivo wound infection mouse model to evaluate the effectiveness of PDIA in treating biofilm-associated skin wound infections caused by Staphylococcus aureus and Pseudomonas aeruginosa. Dermic wounds in mice were infected with biofilm-forming strains, specifically S. aureus 48 and P. aeruginosa 5, which were isolated from patients with diabetic foot, and are well-known for their strong biofilm formation. The subsequent analysis included clinical, microbiological, and histopathological parameters. Furthermore, an exploration into the susceptibility of the infectious strains to hydrogen peroxide was conducted, acknowledging its potential presence during induced inflammation in mouse dermal wounds within an in vivo model. Results: The findings revealed the efficacy of PDIA iminosugar against the S. aureus strain, evidenced by a reduction in bacterial numbers within the wound and the inflammatory focus. Discussion: This study suggests that PDIA iminosugar emerges as an active and potentially effective antibiofilm agent, positioning it as a viable treatment option for staphylococcal infections.


Asunto(s)
Antibacterianos , Biopelículas , Modelos Animales de Enfermedad , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Ratones , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección de Heridas/microbiología , Infección de Heridas/tratamiento farmacológico , Humanos , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA