Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biomed Microdevices ; 26(3): 33, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023652

RESUMEN

Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp-dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp-dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from in vivo animal models to in vitro models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp-dentin complexes and discuss research models and studies related to the biological process.


Asunto(s)
Papila Dental , Dispositivos Laboratorio en un Chip , Células Madre , Humanos , Células Madre/citología , Papila Dental/citología , Animales , Microambiente Celular , Pulpa Dental/citología , Ingeniería de Tejidos/instrumentación , Nicho de Células Madre , Dentina/citología
2.
Wound Repair Regen ; 32(3): 292-300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415387

RESUMEN

The cornea, positioned at the forefront of the eye, refracts the light for focusing images on the retina. Damage to this transparent structure can lead to various visual disorders. The corneal endothelial cells (CECs) are crucial for transparency and homeostasis, but lack the ability to reproduce. Significant damage results in structure destruction and vision impairment. While extensive research has aimed at the restoring the corneal endothelial layer, including endothelial proliferation for functional monolayers remains challenging. Our previous studies confirmed the proliferative activity of stem cells from apical papilla-conditioned medium (SCAP-CM) on the retinal pigmented epithelium as a single cell layer. This study investigates how SCAP-CM influences the proliferation and migration of CECs. Our results introduced Matrigel, as a new matrix component for in vitro culture of CECs. Moreover, 60% of SCAP-CM was able to stimulate CEC proliferation as well as migrate to repair wound healing during 24 h. Confluent CECs also expressed specific markers, ATP1a1, ZO-1 and CD56, indicative of CEC characteristics, aligning with the recapitulation of differentiation when forming a homogenous monolayer at the same level of isolated CECs without in vitro culture. These findings suggested that SCAP-CM administration could be useful for future preclinical and clinical applications.


Asunto(s)
Proliferación Celular , Endotelio Corneal , Células Madre , Cicatrización de Heridas , Animales , Ratas , Medios de Cultivo Condicionados/farmacología , Endotelio Corneal/citología , Cicatrización de Heridas/fisiología , Células Cultivadas , Movimiento Celular , Diferenciación Celular , Lesiones de la Cornea/patología , Células Endoteliales
3.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824241

RESUMEN

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Asunto(s)
Diferenciación Celular , Papila Dental , Luz , Odontogénesis , Osteogénesis , ARN Circular , Células Madre , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Osteogénesis/genética , Diferenciación Celular/genética , Células Madre/metabolismo , Células Madre/citología , Odontogénesis/genética , Papila Dental/citología , Papila Dental/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ontología de Genes , Células Cultivadas , Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Regulación de la Expresión Génica/efectos de la radiación , Luz Azul
4.
Int Endod J ; 57(4): 431-450, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240345

RESUMEN

AIM: Human stem cells from the apical papilla (SCAPs) are an appealing stem cell source for tissue regeneration engineering. Circular RNAs (circRNAs) are known to exert pivotal regulatory functions in various cell differentiation processes, including osteogenesis of mesenchymal stem cells. However, few studies have shown the potential mechanism of circRNAs in the odonto/osteogenic differentiation of SCAPs. Herein, we identified a novel circRNA, circ-ZNF236 (hsa_circ_0000857) and found that it was remarkably upregulated during the SCAPs committed differentiation. Thus, in this study, we showed the significance of circ-ZNF236 in the odonto/osteogenic differentiation of SCAPs and its underlying regulatory mechanisms. METHODOLOGY: The circular structure of circ-ZNF236 was identified via Sanger sequencing, amplification of convergent and divergent primers. The proliferation of SCAPs was detected by CCK-8, flow cytometry analysis and EdU incorporation assay. Western blotting, qRT-PCR, Alkaline phosphatase (ALP) and Alizarin red staining (ARS) were performed to explore the regulatory effect of circ-ZNF236/miR-218-5p/LGR4 axis in the odonto/osteogenic differentiation of SCAPs in vitro. Fluorescence in situ hybridization, as well as dual-luciferase reporting assays, revealed that circ-ZNF236 binds to miR-218-5p. Transmission electron microscopy (TEM) and mRFP-GFP-LC3 lentivirus were performed to detect the activation of autophagy. RESULTS: Circ-ZNF236 was identified as a highly stable circRNA with a covalent closed loop structure. Circ-ZNF236 had no detectable influence on cell proliferation but positively regulated SCAPs odonto/osteogenic differentiation. Furthermore, circ-ZNF236 was confirmed as a sponge of miR-218-5p in SCAPs, while miR-218-5p targets LGR4 mRNA at its 3'-UTR. Subsequent rescue experiments revealed that circ-ZNF236 regulates odonto/osteogenic differentiation by miR-218-5p/LGR4 in SCAPs. Importantly, circ-ZNF236 activated autophagy, and the activation of autophagy strengthened the committed differentiation capability of SCAPs. Subsequently, in vivo experiments showed that SCAPs overexpressing circ-ZNF236 promoted bone formation in a rat skull defect model. CONCLUSIONS: Circ-ZNF236 could activate autophagy through increasing LGR4 expression, thus positively regulating SCAPs odonto/osteogenic differentiation. Our findings suggested that circ-ZNF236 might represent a novel therapeutic target to prompt the odonto/osteogenic differentiation of SCAPs.


Asunto(s)
MicroARNs , Osteogénesis , Humanos , Animales , Ratas , Osteogénesis/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/farmacología , Hibridación Fluorescente in Situ , Papila Dental , Diferenciación Celular , Células Madre , Proliferación Celular , Células Cultivadas , MicroARNs/genética , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Clin Oral Investig ; 28(1): 70, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170260

RESUMEN

OBJECTIVES: To investigate in vitro effects of a nanoparticle bioceramic material, iRoot BP Plus, on stem cells from apical papilla (SCAP) and in vivo capacity to induce pulp-dentin complex formation. MATERIALS AND METHODS: The sealing ability of iRoot BP Plus was measured via scanning electron microscopy (SEM). SCAP were isolated and treated in vitro by iRoot BP Plus conditioned medium, with mineral trioxide aggregate (MTA) conditioned medium and regular medium used as controls, respectively. Cell proliferation was assessed by BrdU labeling and MTT assay and cell migration was evaluated with wound healing and transwell assays. Osteo/odontogenic potential was evaluated by Alizarin red S staining and qPCR. Pulp-dentin complex formation in vivo was assessed by a tooth slice subcutaneous implantation model. RESULTS: iRoot BP Plus was more tightly bonded with the dentin. There was no difference in SCAP proliferation between iRoot BP Plus and control groups (P > 0.05). iRoot BP Plus had a greater capacity to elevated cell migration (P < 0.05) and osteo/odontogenic marker expression and mineralization nodule formation of SCAP compared with MTA groups (P < 0.05). Furthermore, the new continuous dentine layer and pulp-like tissue was observed in the iRoot BP Plus group in vivo. CONCLUSIONS: iRoot BP Plus showed excellent sealing ability, promoted the migration and osteo/odontogenesis of SCAP and induced pulp-dentin complex formation without affecting the cell proliferation, which indicated iRoot BP Plus was a promising coronal sealing material in REPs. CLINICAL RELEVANCE: The coronal sealing materials play crucial roles for the outcomes of REPs. This study showed that iRoot BP Plus has good coronal sealing and promote pulp-dentin complex formation compared with MTA, providing experimental evidences for the clinical application of iRoot BP Plus as a promising coronal seal material in REPs.


Asunto(s)
Endodoncia Regenerativa , Humanos , Medios de Cultivo Condicionados/farmacología , Diferenciación Celular , Pulpa Dental , Silicatos/farmacología , Proliferación Celular , Óxidos/farmacología , Compuestos de Calcio/farmacología , Combinación de Medicamentos , Compuestos de Aluminio/farmacología
6.
Odontology ; 112(2): 399-407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37874511

RESUMEN

To evaluate the osteogenic potential of platelet-rich fibrin (PRF) and low-level laser therapy (LLLT) on human stem cells from the apical papilla (SCAP) we isolated, characterized, and then cultured in an osteogenic medium cells with PRF and/or LLLT (660 nm, 6 J/m2-irradiation). Osteogenic differentiation was assessed by bone nodule formation and expression of bone morphogenetic proteins (BMP-2 and BMP-4), whereas the molecular mechanisms were achieved by qRT-PCR and RNA-seq analysis. Statistical analysis was performed by ANOVA and Tukey's post hoc tests (p < 0.05* and p < 0.01**). Although PRF and LLLT increased bone nodule formation after 7 days and peaked at 21 days, the combination of PRF + LLLT led to the uppermost nodule formation. This was supported by increased levels of BMP-2 and -4 osteogenic proteins (p < 0.005). Furthermore, the PRF + LLLT relative expression of specific genes involved in osteogenesis, such as osteocalcin, was 2.4- (p = 0.03) and 28.3- (p = 0.001) fold higher compared to the PRF and LLLT groups, and osteopontin was 22.9- and 1.23-fold higher, respectively (p < 0.05), after 7 days of interaction. The transcriptomic profile revealed that the combination of PRF + LLLT induces MSX1, TGFB1, and SMAD1 expression, after 21 days of osteogenic differentiation conditions exposition. More studies are required to understand the complete cellular and molecular mechanisms of PRF plus LLLT on stem cells. Overall, we demonstrated for the first time that the combination of PRF and LLLT would be an excellent therapeutic tool that can be employed for dental, oral, and craniofacial repair and other tissue engineering applications.


Asunto(s)
Osteogénesis , Fibrina Rica en Plaquetas , Humanos , Fibrina Rica en Plaquetas/metabolismo , Proliferación Celular , Células Cultivadas , Células Madre , Diferenciación Celular , Rayos Láser
7.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612855

RESUMEN

Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.


Asunto(s)
Lipopolisacáridos , Osteogénesis , Humanos , Animales , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X , Inflamación/genética , Proteínas de Unión al Calcio , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
8.
BMC Oral Health ; 24(1): 1023, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215266

RESUMEN

BACKGROUND: Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years, many chemical components and new synthesizing methods were used to improve the base formulation of the materials for positively affecting the sealers properties. Recently, a novel biomaterial formulation, grounded in strontium silicate, has been introduced to the market, offering potential advancements in the field. OBJECTIVE: To comparatively analyze the cytotoxicity and cell migration effects of a novel strontium silicate-based bioceramic material (CRoot SP) and those of calcium silicate-based (iRoot SP) and epoxide amine resin (AH Plus) sealers on stem cells derived from rat apical papilla(rSCAPs). METHODS: rSCAPs were isolated and characterized in vitro and subsequently cultured in the presence of various concentrations of CRoot SP, iRoot SP and AH Plus extracts. Cytotoxicity was assessed by CCK-8 assay, and cell-migration capacity was assessed by using wound healing assays . RESULTS: No significant differences in cell viability were observed in the 0.02 mg/mL and 0.2 mg/mL sealer groups. The cell viability of CRoot SP was consistently greater than that of iRoot SP at concentrations of 5 mg/mL and 10 mg/mL across all time points. Maximum cytotoxic effect was noted on day 5 with 10 mg/mL AH Plus.The scratch was partly healed by cell migration in all groups at 24 h, and the 0.02 mg/mL, and 0.2 mg/mL CRoot SP exerted beneficial effects on rSCAPs migration. CONCLUSIONS: CRoot SP exhibited less cytotoxic than the iRoot SP and AH Plus extracts after setting. A lower concentration of CRoot SP thus promotes the cell migration capacity of rSCAPs, and it may achieve better tissue repair during root canal treatment.


Asunto(s)
Compuestos de Calcio , Movimiento Celular , Supervivencia Celular , Resinas Epoxi , Materiales de Obturación del Conducto Radicular , Silicatos , Células Madre , Animales , Silicatos/farmacología , Movimiento Celular/efectos de los fármacos , Materiales de Obturación del Conducto Radicular/farmacología , Materiales de Obturación del Conducto Radicular/toxicidad , Ratas , Compuestos de Calcio/farmacología , Resinas Epoxi/farmacología , Resinas Epoxi/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Técnicas In Vitro , Ensayo de Materiales , Células Cultivadas , Cerámica/farmacología , Estroncio/farmacología , Papila Dental/citología , Papila Dental/efectos de los fármacos , Ápice del Diente/efectos de los fármacos , Ápice del Diente/citología
9.
Biol Proced Online ; 25(1): 2, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690939

RESUMEN

BACKGROUND: Periodontal regeneration, treatment of periodontal-related diseases and improving the function of implants are global therapeutic challenges. The differentiation of human stem cells from apical papilla into cementoblasts may provide a strategy for periodontitis treatment. This study aimed to evaluate the differentiation of primary human stem cells apical papilla (hSCAPs) to cementoblast cells. MATERIAL AND METHODS: SCAPs cells were isolated from human third molar and then incubated for 21 days in a differentiation microenvironment. Alkaline phosphatase (ALP) and Alizarin red S staining assays were performed to evaluate the calcium deposition and formation of hydroxyapatite in the cultured hSCAPs microenvironment. Real-time polymerase chain reaction (RT-PCR) assay was performed for cementum protein 1 (CEMP1), collagen type I (COL1), F-Spondin (SPON1), osteocalcin (OCN), and osteopontin (OPN) as specific markers of cementoblasts and their progenitors. RESULTS: ALP phosphatase activity in day 21 of treatment demonstrated a significant increase in ALP compared to the control. Alizarin red S staining assay showed that the differentiated hSCAPs offered a great amount of calcium deposition nodules compared to the control. The increased expression level of CEMP1, OCN, OPN, COL1 and Spon1 was observed in days 7, 14 and 21 compared to the control, while greatest expression level was observed in day 21. CONCLUSION: In conclusion, the differentiation microenviroment is convenient and useful for promoting the differentiation of hSCAPs into cementoblast.

10.
Biogerontology ; 24(4): 533-539, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37010664

RESUMEN

Dental pulp under physiological conditions has a defense function, repair capacity, and important mechanisms in pathological processes. In addition, the dental papilla is involved in important defense processes and an essential function in the pulp revascularization process. It is known that dental pulp and apical papilla undergo a natural aging process, in addition to stressful situations such as bruxism, inflammation, and infections. Both aging and stressful situations can lead to cellular senescence. Some evidence indicates that the changes resulting from this cellular state can directly affect the efficiency of cells in these tissues and affect conservative and regenerative clinical treatments. Thus, it is necessary to understand the causes and consequences of cellular senescence in addition to the development of methods for senescence prevention. This review aims to provide an overview of possible causes and consequences of senescence in dental pulp and stem cells from apical papilla and discusses possible methods to prevent this cellular state.


Asunto(s)
Senescencia Celular , Pulpa Dental , Humanos , Células Madre/fisiología , Envejecimiento , Inflamación , Diferenciación Celular
11.
Mol Biol Rep ; 50(11): 8959-8969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715020

RESUMEN

BACKGROUND: An experimental study was conducted to examine whether melatonin influences osteogenic/odontogenic differentiation of human stem cells derived from the apical papilla (hSCAPs). MATERIALS AND METHODS: In order to isolate hSCAPs, the undeveloped root of a third molar of a human tooth was used. Melatonin was administered to the experimental groups in an osteogenic medium. No treatment was administered to the control group. The methyl thiazolyl tetrazolium (MTT) assay was performed on days 1, 2, and 3 to assess cell viability (n = 8). A determination of odontogenic/osteogenic differentiation was accomplished using alkaline phosphatase (ALP) activity alizarin red staining (ARS) (n = 6), and the expression of osteogenic genes by real-time polymerase chain reaction (RT-PCR) (n = 3) on days 1, 2, and 7. Evaluation of the data was conducted using SPSS version 18. All experiments were conducted at least three times. The Mann Whitney U test, the ANOVA analysis, Tukey's test, and t-test was implemented to analyze the data (α = 0.05). RESULTS: After 24 h, 48 h, and 72 h, No significant difference was observed between the control group and the melatonin treatment group in terms of viability of hSCAPs. (from 1 up to 10 µg/ml) (P > 0.05). The assessment of ARS and ALP activity showed that melatonin treatment enhanced osteogenic differentiation of hSCAPs (P < 0.001). Melatonin treatment caused hSCAPs to show an increase of genes related to osteogenic/odontogenic differentiation. These genes included ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1), and bone sialoprotein (BSP) (P < 0.001). CONCLUSIONS: Melatonin treatment enhanced osteogenic/odontogenic differentiation of hSCAPs with a dose dependent effect on cell viability.


Asunto(s)
Melatonina , Osteogénesis , Humanos , Melatonina/farmacología , Melatonina/metabolismo , Células Cultivadas , Diferenciación Celular , Células Madre/metabolismo , Proliferación Celular
12.
Cell Mol Life Sci ; 79(5): 252, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35445984

RESUMEN

Traumatic spinal cord injury is an overwhelming condition that strongly and suddenly impacts the patient's life and her/his entourage. There are currently no predictable treatments to repair the spinal cord, while many strategies are proposed and evaluated by researchers throughout the world. One of the most promising avenues is the transplantation of stem cells, although its therapeutic efficiency is limited by several factors, among which cell survival at the lesion site. In our previous study, we showed that the implantation of a human dental apical papilla, residence of stem cells of the apical papilla (SCAP), supported functional recovery in a rat model of spinal cord hemisection. In this study, we employed protein multiplex, immunohistochemistry, cytokine arrays, RT- qPCR, and RNAseq technology to decipher the mechanism by which the dental papilla promotes repair of the injured spinal cord. We found that the apical papilla reduced inflammation at the lesion site, had a neuroprotective effect on motoneurons, and increased the apoptosis of activated macrophages/ microglia. This therapeutic effect is likely driven by the secretome of the implanted papilla since it is known to secrete an entourage of immunomodulatory or pro-angiogenic factors. Therefore, we hypothesize that the secreted molecules were mainly produced by SCAP, and that by anchoring and protecting them, the human papilla provides a protective niche ensuring that SCAP could exert their therapeutic actions. Therapeutic abilities of the papilla were demonstrated in the scope of spinal cord injury but could very well be beneficial to other types of tissue.


Asunto(s)
Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Animales , Femenino , Humanos , Microglía , Ratas , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Células Madre
13.
Cell Mol Life Sci ; 79(7): 350, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672609

RESUMEN

Retinal degeneration (RD) is recognized as a frequent cause of visual impairments, including inherited (Retinitis pigmentosa) and degenerative (age-related macular) eye diseases. Dental stem cells (DSCs) have recently demonstrated a promising neuroprotection potential for ocular diseases through a paracrine manner carried out by extracellular vesicles (EVs). However, effective isolation of EVs is still challenging, and isolation methods determine the composition of enriched EVs and the subsequent biological and functional effects. In the present study, we assessed two enrichment methods (micro-electromechanical systems and ultrafiltration) to isolate the EVs from stem cells from apical papilla (SCAP). The size distribution of the corresponding isolates exhibited the capability of each method to enrich different subsets of EVs, which significantly impacts their biological and functional effects. We confirmed the neuroprotection and anti-inflammatory capacity of the SCAP-EVs in vitro. Further experiments revealed the possible therapeutic effects of subretinal injection of SCAP-EVs in the Royal College of Surgeons (RCS) rat model. We found that EVs enriched by the micro-electromechanical-based device (MEMS-EVs) preserved visual function, reduced retinal cell apoptosis, and prevented thinning of the outer nuclear layer (ONL). Interestingly, the effect of MEMS-EVs was extended to the retinal ganglion cell/retinal nerve fiber layer (GCL/RNFL). This study supports the use of the microfluidics approach to enrich valuable subsets of EVs, together with the choice of SCAP as a source to derive EVs for cell-free therapy of RD.


Asunto(s)
Vesículas Extracelulares , Fármacos Neuroprotectores , Degeneración Retiniana , Animales , Humanos , Ratas , Retina , Degeneración Retiniana/terapia , Células Madre
14.
Oral Dis ; 29(7): 2827-2836, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36579641

RESUMEN

OBJECTIVES: Stem cells of the apical papilla (SCAPs) provide promising candidates for dental pulp regeneration. Despite great advances in the transcriptional controls of the SCAPs fate, little is known about the regulation of SCAP differentiation. MATERIALS AND METHODS: Short hairpin RNAs and full-length RNA were used to deplete or overexpress lysine demethylase 4D (KDM4D) gene expression. Western blotting, real-time RT-PCR, alizarin red staining, and scratch migration assays were used to study the role of KDM4D and the ribosomal protein encoded by RPS5 in SCAPs. RNA microarray, chromatin Immunoprecipitation (ChIP), and co-immunoprecipitation (Co-IP) assays were performed to explore the underlying molecular mechanisms. RESULTS: KDM4D enhanced the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. The microarray results revealed that 88 mRNAs were differentially expressed in KDM4D-overexpressed SCAPs. ChIP results showed knock-down of KDM4D increased the level of H3K9me2 and H3K9me3 in CNR1 promoter region. There were 37 possible binding partners of KDM4D. KDM4D was found to combine with RPS5, which also promoted the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. CONCLUSIONS: KDM4D promoted the osteo/dentinogenic differentiation and migration potential of SCAPs in combination with RPS5, which provides a therapeutic clue for improving SCAPs-based dental tissue regeneration.


Asunto(s)
Pulpa Dental , Histona Demetilasas con Dominio de Jumonji , Regeneración , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Papila Dental/metabolismo , Pulpa Dental/metabolismo , Osteogénesis/genética , ARN Interferente Pequeño , Células Madre , Humanos , Histona Demetilasas con Dominio de Jumonji/genética
15.
Clin Oral Investig ; 27(5): 1973-1980, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36790627

RESUMEN

OBJECTIVES: To evaluate the effect of EDTA and saline as the final irrigation in regenerative endodontic procedures (REPS) on the attachment, proliferation, migration, and differentiation of stem cells from the apical papilla (SCAPs). MATERIALS AND METHODS: Dentin specimens from 140 human third molars were irrigated with various protocols-group 1: normal sterile saline (NSS), group 2: EDTA, group 3: EDTA then 5 mL NSS, or group 4: EDTA then 20 mL NSS. The specimens were used in cell assays. For cell proliferation, SCAPs were seeded on dentin, and the cell viability on days 1, 3, and 7 was determined using an MTT assay. At day 3, the attached cells' morphology was observed using SEM, and cell migration was investigated using a transwell migration assay. The ALP activity and odonto/osteogenic differentiation gene expression were evaluated at days 7, 14, and 21 using an ALP activity assay and RT-qPCR. RESULTS: On days 3 and 7, group 4 demonstrated more viable cells than group 1 (p < 0.01). The amount of migrated cells in groups 2, 3, and 4 was greater compared with group 1 (p < 0.05). Moreover, SCAP differentiation was similar between groups. CONCLUSIONS: Irrigating dentin with EDTA alone or with EDTA then NSS promoted SCAP migration. However, a final irrigation with 20 mL NSS after EDTA promoted SCAP proliferation without affecting their differentiation. CLINICAL RELEVANCE: When using a blood clot as a scaffold, a final flushing with 20 mL NSS after EDTA could be beneficial for clinical REP protocols.


Asunto(s)
Papila Dental , Endodoncia Regenerativa , Humanos , Ácido Edético/farmacología , Osteogénesis , Endodoncia Regenerativa/métodos , Células Madre , Proliferación Celular , Diferenciación Celular , Células Cultivadas
16.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445785

RESUMEN

Stem cells from the apical papilla (SCAPs) are used to regulate the microenvironment of nerve defects. KDM6B, which functions as an H3K27me3 demethylase, is known to play a crucial role in neurogenesis. However, the mechanism by which KDM6B influences the neurogenesis potential of SCAPs remains unclear. We evaluated the expression of neural markers in SCAPs by using real-time RT-PCR and immunofluorescence staining. To assess the effectiveness of SCAP transplantation in the SCI model, we used the BBB scale to evaluate motor function. Additionally, toluidine blue staining and Immunofluorescence staining of NCAM, NEFM, ß-III-tubulin, and Nestin were used to assess nerve tissue remodeling. Further analysis was conducted through Microarray analysis and ChIP assay to study the molecular mechanisms. Our results show that KDM6B inhibits the expression of NeuroD, TH, ß-III tubulin, and Nestin. In vivo studies indicate that the SCAP-KDM6Bsh group is highly effective in restoring spinal cord structure and motor function in rats suffering from SCI. Our findings suggest that KDM6B directly binds to the HES1 promoter via regulating H3K27me3 and HES1 expression. In conclusion, our study can help understand the regulatory role of KDM6B in neurogenesis and provide more effective treatments for nerve injury.


Asunto(s)
Histonas , Tubulina (Proteína) , Ratas , Animales , Histonas/metabolismo , Nestina/genética , Nestina/metabolismo , Diferenciación Celular , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Células Madre/metabolismo , Neurogénesis , Papila Dental/metabolismo , Células Cultivadas , Osteogénesis
17.
Cell Tissue Res ; 389(2): 187-199, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543755

RESUMEN

Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.


Asunto(s)
Odontogénesis , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Papila Dental , Humanos , Lamina Tipo A/metabolismo , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/farmacología , Transducción de Señal , Células Madre
18.
Int Endod J ; 55(12): 1359-1371, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36036876

RESUMEN

AIM: Guided tissue regeneration has been considered a promising strategy to replace conventional endodontic therapy of teeth with incomplete root formation. Therefore, the objective of this study was to develop a tubular scaffold (TB-SC) with poly (caprolactone)-aligned nanofibres associated with a fibronectin (FN)-loaded collagen hydrogel and assess the pulp regeneration potential mediated by human apical papilla cells (hAPCs) using an in vitro model of teeth with incomplete root formation. METHODOLOGY: Aligned nanofibre strips based on 10% poly(caprolactone) (PCL) were synthesized with the electrospinning technique to produce the TB-SCs. These were submitted to different treatments, according to the following groups: TB-SC (negative control): TB-SC without treatment; TB-SC + FN (positive control): TB-SC coated with 10 µg/ml of FN; TB-SC + H: TB-SC associated with collagen hydrogel; TB-SC + HFN: TB-SC associated with FN-loaded collagen hydrogel. Then, the biomaterials were inserted into cylindrical devices to mimic the regenerative therapy of teeth with incomplete root formation. The hAPCs were seeded on the upper surface of the TB-SCs associated or not with any treatment, and cell migration/proliferation and the gene expression of markers related to pulp regeneration (ITGA5, ITGAV, COL1A1 and COL1A3) were evaluated. The data were submitted to anova/Tukey's tests (α = 5%). RESULTS: Higher values of cell migration/proliferation and gene expression of all markers tested were observed in groups TB-SC + FN, TB-SC + H, and TB-SC + HFN compared with the TB-SC group (p < .05). The hAPCs in the TB-SC + HFN group showed the highest values of cell proliferation and gene expression of COL1A1 and COL3A1 (p < .05), as well as superior cell migration results to groups TB-SC and TB-SC + H (p < .05). CONCLUSION: Aligned nanofibre scaffolds associated with the FN-loaded collagen hydrogel enhanced the migration and proliferation of hAPCs and gene expression of pulp regeneration markers. Therefore, the use of these biomaterials may be considered an interesting strategy for regenerative pulp therapy of teeth with incomplete root formation.


Asunto(s)
Nanofibras , Endodoncia Regenerativa , Humanos , Nanofibras/uso terapéutico , Hidrogeles , Andamios del Tejido , Pulpa Dental , Fibronectinas , Regeneración , Colágeno , Materiales Biocompatibles , Ingeniería de Tejidos/métodos
19.
Int Endod J ; 55(5): 517-530, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35274316

RESUMEN

AIM: To evaluate the effects of exosomes derived from stem cells from the apical papilla (SCAP-Exos) in rats with experimentally induced pulpitis and the effects of SCAP-Exos on the conversion of regulatory T cells (Tregs) and methylation status of the Foxp3 locus in Tregs in vitro. METHODOLOGY: SCAP-Exos were isolated and identified using transmission electron microscopy, western blotting, and nanoparticle tracking analysis. Lipopolysaccharide was used to experimentally induced pulpitis in rats, and the effects of SCAP-Exos on the rats with pulpitis were detected using haematoxylin-eosin staining and immunofluorescence staining. CD4+ CD25- T cells were treated with different doses of SCAP-Exos, and flow cytometric analysis was used to assess the effects of SCAP-Exos on Treg proliferation and conversion. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the expression of interleukin 10 (IL-10). MethylTarget® technology was used to measure the methylation level of the Foxp3 locus in T cells. The expression levels of ten-eleven-translocation (Tet) 1, Tet2, and Tet3 in T cells were detected by real-time PCR and western blotting. RESULTS: SCAP-Exos had an elliptical vesicle-like structure with a diameter of approximately 143.7 nm and expressed the exosomal markers Alix and CD9. SCAP-Exo administration increased Treg accumulation in the inflamed dental pulp and alleviated inflammation in the dental pulp in vivo. SCAP-Exos promoted Treg conversion in vitro. Mechanistically, SCAP-Exos promoted Tet2-mediated Foxp3 demethylation to maintain the stable expression of Foxp3. CONCLUSIONS: SCAP-Exos promoted Treg conversion and effectively alleviated inflammation in the dental pulp of rats. This study shows that SCAP-Exos can regulate the local immune microenvironment to favour tissue regeneration, thus providing a potential novel strategy utilising SCAP-Exos as a cell-free approach to treat early inflammation of dental pulp in immature permanent teeth in the clinic.


Asunto(s)
Exosomas , Pulpitis , Animales , Factores de Transcripción Forkhead , Inflamación , Ratas , Células Madre , Linfocitos T Reguladores
20.
Int Endod J ; 55(3): 263-274, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34807471

RESUMEN

AIM: To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY: miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS: miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS: miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.


Asunto(s)
Diferenciación Celular , Papila Dental/citología , MicroARNs , Factores de Transcripción NFI , Células Cultivadas , Humanos , MicroARNs/genética , Factores de Transcripción NFI/genética , Osteogénesis , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA