Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 123(10): 2213-2223, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37256294

RESUMEN

PURPOSE: The purpose of the study was to determine whether sports training comprised of (1) high-impact loading sport in volleyball (VOL), (2) odd impact loading sport in soccer (SOC), and (3) low impact sport in distance running (RUN) were associated with tibial bending strength and calcaneus bone mineral density (BMD), and ulnar bending strength and wrist BMD. METHOD: Female athletes comprised of 13 VOL, 22 SOC, and 22 RUN participated in the study. Twenty-three female non-athletes (NA) served as the comparison group. Tibial and ulnar bending strength (EI, Nm2) were assessed using a mechanical response tissue analyzer (MRTA). Calcaneus and wrist BMD were assessed using a peripheral X-ray absorptiometry. Group means differences among the study groups were determined using ANCOVA with age, weight, height, percent body fat, ethnicity/race, and training history serving as covariates. RESULTS: Tibial EI of VOL (228.3 ± 138 Nm2) and SOC (208.6 ± 115 Nm2) were greater (p < 0.05) compared to NA (101.2 ± 42 Nm2). Ulnar EI of SOC (54.9 ± 51 Nm2) was higher (p < 0.05) than NA (27.2 ± 9 Nm2). Calcaneus BMD of VOL (0.618 ± 0.12 g/cm2), SOC (0.621 ± 0.009 g/cm2), and RUN (0.572 ± 0.007 g/cm2) were higher (p < 0.05) than NA (0.501 ± 0.08 g/cm2), but not different between athletic groups. Wrist BMD of VOL (0.484 ± .06 g/cm2) and SOC (0.480 ± 0.06 g/cm2) were higher (p < 0.05) than NA (0.443 ± 0.04 g/cm2). CONCLUSIONS: Female VOL athletes exhibit greater tibial bending strength than RUN and NA, but not greater than SOC. Female SOC athletes exhibit greater ulnar bending strength and wrist BMD than NA.


Asunto(s)
Carrera , Fútbol , Voleibol , Femenino , Humanos , Densidad Ósea/fisiología , Huesos , Carrera/fisiología , Absorciometría de Fotón
2.
Osteoporos Int ; 33(3): 695-701, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34625826

RESUMEN

The rationale of this study was to examine the effectiveness of 6-month high-impact step aerobics (SA) or moderate-intensity resistance training exercise (RT) on bone mineral density (BMD) and bone bending strength in sedentary women. Results show that SA enhanced BMD in the heel, lower leg, and lumbar spine 2. INTRODUCTION: To determine the effectiveness of 6 months of high-impact step aerobics (SA) or moderate-intensity resistance training (RT) on areal bone mineral density (aBMD) and tibial bending strength in sedentary premenopausal women. METHODS: Sixty-nine women (20-35 years old) who were randomly assigned to RT (n = 22), SA (n = 26), or non-treatment control (CON, n = 21) groups completed the study. SA had a minimum of 50 high-impact landings each training session. RT had a periodized lower body resistance training program incorporating eight exercises (65-85% of 1 repetition maximum: 1-RM). Both RT and SA met 3 times weekly. aBMD was assessed using dual X-ray absorptiometry (DXA). Tibial bending strength was assessed using mechanical response tissue analysis (MRTA). Measurements at 6 months were compared to baseline using ANCOVA, adjusted for baseline measures and covariates with α = 0.05. RESULTS: Calcaneus aBMD (0.0176 vs -0.0019 or -0.0009 g/cm2 relative to RT, p < 0.004, and CON, p < 0.006, respectively), lower leg aBMD (0.0105 vs -0.0036 g/cm2, relative to RT, p = 0.02), and lumbar spine 2 (L2) aBMD (0.0082 vs -0.0157 g/cm2 relative to CON, p < 0.02) were significantly greater in the SA group after 6 months. Tibial bending strength and bone resorption biomarkers were unchanged in all three groups after 6 months. CONCLUSION: Sedentary premenopausal women engaging in 6 months of high-impact aerobic exercise improved aBMD in the calcaneus, lower leg, and L2.


Asunto(s)
Densidad Ósea , Entrenamiento de Fuerza , Absorciometría de Fotón , Adulto , Ejercicio Físico , Femenino , Humanos , Premenopausia , Adulto Joven
3.
Nanotechnology ; 32(43)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34271561

RESUMEN

Strong interfacial bonding is the basic requirement for metal-graphene composites for higher thermo-mechanical properties. In the present work, a novel metal tantalum is introduced in the metal-graphene composites prepared by (ball-milling + molecular level mixing) followed by hot press sintering. SEM, transmission electron microscopy and high transmission electron microscopy are observed to check the interface area which shows the presence of tantalum carbide on the interface area which is formed during the sintering process. The formation of the carbide element significantly enhances the mechanical properties of composites. The addition of a very low amount of 0.1 vol% of rGO give the very high yield strength 200 MPa and ultimate tensile strength value 375 MPa with the good agreement of ductility, Vickers hardness 95 HV and bending strength 617 MPa which are much higher than unreinforced copper-tantalum composites and even from pure copper. The anisotropic thermal conductivity values are also significantly improving due to the better interfacial bonding and the ratio was 5 which is just 1.01 for pure copper. The formation of carbide elements and extraordinary high mechanical values with good ductility and anisotropic thermal conductivity ratio can lead to these materials used in thermal packaging systems and the electronic industry.

4.
J Hum Evol ; 126: 51-70, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30583844

RESUMEN

A ∼1.52 Ma adult upper limb skeleton of Paranthropus boisei (KNM-ER 47000) recovered from the Koobi Fora Formation, Kenya (FwJj14E, Area 1A) includes most of the distal half of a right humerus (designated KNM-ER 47000B). Natural transverse fractures through the diaphysis of KNM-ER 470000B provide unobstructed views of cortical bone at two sections typically used for analyzing cross-sectional properties of hominids (i.e., 35% and 50% of humerus length from the distal end). Here we assess cross-sectional properties of KNM-ER 47000B and two other P. boisei humeri (OH 80-10, KNM-ER 739). Cross-sectional properties for P. boisei associated with bending/torsional strength (section moduli) and relative cortical thickness (%CA; percent cortical area) are compared to those reported for nonhuman hominids, AL 288-1 (Australopithecus afarensis), and multiple species of fossil and modern Homo. Polar section moduli (Zp) are assessed relative to a mechanically relevant measure of body size (i.e., the product of mass [M] and humerus length [HL]). At both diaphyseal sections, P. boisei exhibits %CA that is high among extant hominids (both human and nonhuman) and similar to that observed among specimens of Pleistocene Homo. High values for Zp relative to size (M × HL) indicate that P. boisei had humeral bending strength greater than that of modern humans and Neanderthals and similar to that of great apes, A. afarensis, and Homo habilis. Such high humeral strength is consistent with other skeletal features of P. boisei (reviewed here) that suggest routine use of powerful upper limbs for arboreal climbing.


Asunto(s)
Diáfisis/fisiología , Hominidae/fisiología , Húmero/fisiología , Extremidad Superior/fisiología , Animales , Antropología Física , Fuerza Compresiva , Diáfisis/anatomía & histología , Hominidae/anatomía & histología , Húmero/anatomía & histología , Paleontología
5.
Molecules ; 24(21)2019 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-31684155

RESUMEN

The bending properties of three-dimensional (3Dim) and five-directional (5Dir) braided/epoxy resin composites at room temperature, 90 °C, 110 °C, and 150 °C and heating for 0.25 h, 10 h, and 30 h, respectively, were studied. The effect of different temperatures and heating times on the bending property of these composites was discussed. The results showed that the bending strength of these composites at 90 °C, 110 °C, and 150 °C and heating time of 0.25 h is 33.86%, 46.27%, and 83.94% lower, respectively, than that at room temperature. In addition, 3Dim-5Dir braided composites exhibit different damage modes at different temperatures, revealing different failure mechanisms. Heating temperature has greater influence on the bending properties of these composites than heating time. The results provided a basis for the application of resin-based 3Dim-5Dir braided/epoxy resin composites at different temperatures.


Asunto(s)
Resinas Compuestas/química , Resinas Epoxi/química , Ensayo de Materiales , Calor , Polimerizacion
6.
J Prosthodont ; 28(1): e404-e410, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30028052

RESUMEN

PURPOSE: To evaluate the influence of specimen thickness and low-temperature degradation (LTD) on yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP). MATERIALS AND METHODS: Thin discs of Y-TZP from four manufacturers were sintered according to each manufacturer's recommendations, cut into 23 mm (length) × 4 mm (width) × 0.8 mm/1.5 mm (thickness) specimens, artificially aged under standard autoclave sterilization conditions (34°C at 0.2 MPa for 10 and 20 hours), and finally ground and polished. Tetragonal to monoclinic transformation was confirmed by X-ray diffraction (XRD) analysis. Flexural strength was measured by 3-point bending tests and Vickers hardness measurements. Fracture surfaces were examined by scanning electron microscopy (SEM). RESULTS: SEM investigation revealed that with increasing aging time, the surface defects and grain size increased, particularly in the 20-hour group. Compared with the 1.5 mm group, the 0.8 mm group showed more significant defects, irrespective of aging time. The flexural strengths of Y-TZP materials decreased with a decrease in the thickness. Moreover, LTD of Y-TZP can cause significant tetragonal to monoclinic transformation, which also results in a statistically significant decrease in the flexural strength. CONCLUSION: A thinner Y-TZP specimen was likely to present surface defects and microcracks after aging. In addition, the flexural strengths decreased with a decrease in the thickness, a notable fact for further studies.


Asunto(s)
Materiales Dentales , Itrio , Circonio , Frío , Materiales Dentales/química , Análisis del Estrés Dental , Resistencia Flexional , Microscopía Electrónica de Rastreo , Factores de Tiempo , Difracción de Rayos X , Itrio/química , Circonio/química
7.
Sensors (Basel) ; 18(8)2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30103500

RESUMEN

This paper presents a nondestructive test method to evaluate the residual bending strength of corroded reinforced concrete beam by analyzing the self-magnetic flux leakage (SMFL) signals. The automatic scanning device was equipped with a micromagnetic sensor and sensor-based experimental details were introduced. Next, the theoretical formula of the normal component HS(z) of the SMFL signal that originated from the corroded region was derived based on the magnetic dipole model and the experimental results were discussed. The results indicate that the experimental data of HS(z) are consistent with the theoretical calculations, both location and extent of the steel bars corrosion can be qualitatively determined by using HS(z). The gradient K of HS(z) is approximately linearly related to the loss rate, S, of the bending strength, which can be used to evaluate the residual bending strength of the corroded reinforced concrete beam. This work lays the foundation for evaluating the residual bending strength of corroded reinforced concrete beams using the SMFL signal; the micromagnetic sensor is further applied to the civil engineering.

8.
Sensors (Basel) ; 16(6)2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27322276

RESUMEN

In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

9.
J Exp Bot ; 66(11): 3151-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25903914

RESUMEN

The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties.


Asunto(s)
Raíces de Plantas/anatomía & histología , Zea mays/anatomía & histología , Raíces de Plantas/fisiología , Suelo , Zea mays/fisiología
10.
Regul Toxicol Pharmacol ; 73(3): 747-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26529390

RESUMEN

Sequentially chemical-treated bovine bone was not only evaluated by mechanical and chemical analyses but also implanted into the gluteal muscles of rats for 12 weeks to investigate potential local pathological effects and systemic toxicities. The test (chemical treated bone) and control (heat treated bone) materials were compared using scanning electron microscope (SEM), x-ray diffraction pattern, inductively coupled plasma analysis, and bending strength test. In the SEM images, the micro-porous structure of heat-treated bone was changed to sintered ceramic-like structure. The structure of bone mineral from test and control materials was analyzed as100% hydroxyapatite. The ratio of calcium (Ca) to potassium (P), the main inorganic elements, was same even though the Ca and P percentages of the control material was relatively higher than the test material. No death or critical symptoms arose from implantation of the test (chemical treated bone) and control (physiological saline) materials during 12 weeks. The implanted sites were macroscopically examined, with all the groups showing non-irritant results. Our results indicate that chemical processed bovine bone has a better mechanical property than the heat treated bone and the implantation of this material does not produce systemic or pathological toxicity.


Asunto(s)
Trasplante Óseo/métodos , Huesos/efectos de los fármacos , Músculo Esquelético/cirugía , Animales , Fenómenos Biomecánicos , Trasplante Óseo/efectos adversos , Huesos/química , Huesos/diagnóstico por imagen , Huesos/ultraestructura , Nalgas , Calcio/análisis , Bovinos , Durapatita/análisis , Femenino , Xenoinjertos , Calor , Masculino , Microscopía Electrónica de Rastreo , Porosidad , Potasio/análisis , Radiografía , Ratas , Ratas Sprague-Dawley , Medición de Riesgo , Espectrofotometría Atómica , Estrés Mecánico , Factores de Tiempo , Pruebas de Toxicidad Subcrónica , Trasplante Heterólogo , Difracción de Rayos X
11.
Materials (Basel) ; 17(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930349

RESUMEN

A ZrB2-copper-graphite composite was produced through powder metallurgy and was tested as a new electric brush material. The aim of this paper was to study the effect of ZrB2 addition on the composite's properties. Besides its physical properties such as density and resistivity, its mechanical properties, such as hardness, bending strength and wear resistance, were studied. A scanning electron microscope (SEM) was used to study the morphology of the wear surface, and a configured energy-dispersive spectrometer (EDS) was used to research the chemical composition of the samples. The results showed that, with the addition of ZrB2, the composite's properties such as density, resistivity, hardness, and bending strength improved significantly. Compared with samples without ZrB2, samples with the addition of 4% ZrB2 achieved a hardness of 87.5 HRA, which was improved by 45.8%, and a bending strength of 53.1 MPa, which was increased by nearly 50.0%. Composites with 1% content of ZrB2 showed the best wear resistance under non-conductive friction; however, under conductive friction, composites with 4% content of ZrB2 showed better wear resistance.

12.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255519

RESUMEN

This study aims to enhance the productivity of high-voltage transmission line insulators and their operational safety by investigating their failure mechanisms under ultimate load conditions. Destructive tests were conducted on a specific type of insulator under ultimate load conditions. A high-speed camera was used to document the insulator's failure process and collect strain data from designated points. A simulation model of the insulator was established to predict the effects of ultimate loads. The simulation results identified a maximum first principal stress of 94.549 MPa in the porcelain shell, with stress distribution characteristics resembling a cantilever beam subjected to bending. This implied that the insulator failure occurred when the stress reached the bending strength of the porcelain shell. To validate the simulation's accuracy, bending and tensile strength tests were conducted on the ceramic materials constituting the insulator. The bending strength of the porcelain shell was 100.52 MPa, showing a 5.6% variation from the simulation results, which indicated the reliability of the simulation model. Finally, optimization designs on the design parameters P1 and P2 of the insulator were conducted. The results indicated that setting P1 to 8° and P2 to 90.062 mm decreased the first principal stress of the porcelain shell by 47.6% and Von Mises stress by 31.6% under ultimate load conditions, significantly enhancing the load-bearing capacity. This research contributed to improving the production yield and safety performance of insulators.

13.
Materials (Basel) ; 17(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255475

RESUMEN

In Bolivia, lateritic soils are common in humid tropical regions and can be used in the construction industry as an alternative to materials that cause a negative environmental impact, such as cement. The production of Portland cement causes environmental issues like significant greenhouse gas emissions and air pollution. To address this problem, geopolymers have been introduced as an alternative binder with low CO2 emissions. In this regard, geopolymers based on lateritic clays have been studied mineralogically, chemically, and on their compressive strength separately. However, there are still no studies on lateritic clays present in Bolivia and their mechanical, mineralogical, and chemical properties combined in a geopolymer. Therefore, this present research proposes the evaluation of a geopolymer made from laterite clays. Compression and flexural tests were carried out, along with mineralogical and chemical analyses on mortar and geopolymer cubes and prisms. The results indicate that the laterite clay-based geopolymer has lower compressive strength compared to Portland cement IP (cement type I with the addition of pozzolana) mortar. However, the flexural strength tests show a slight increase in the case of the geopolymer.

14.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730879

RESUMEN

This study aimed to investigate the gradient properties of bamboo at the microscopic level and provide a basis for improving the utilization rate of bamboo. Using moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) as a research subject, the variation of vascular bundle area percentage, chemical content, relative crystallinity (CR), mechanical properties of different bamboo slivers, and correlation between those parameters were analyzed. From the bamboo green layer (BGL) to the bamboo yellow layer (BYL), the distribution of vascular bundles changed from dense to sparse. Cellulose and lignin mass content decreased gently, and hemicellulose mass content showed gradual increases. The CR showed an order of bamboo middle layer (BML) > BGL > BYL. The tensile modulus of elasticity, tensile strength, bending modulus of elasticity, and bending strength decreased from BGL to BYL. The order of influence degree on mechanical properties of moso bamboo was vascular bundle area, hemicellulose content, lignin mass content, density, and CR, and these factors correlated with mechanical properties at a significant level (p < 0.05). Vascular bundle area had a decisive effect on the mechanical properties of bamboo. The vascular bundle area and density were linearly correlated with mechanical properties, while the lignin mass content and CR were curve-linearly correlated with mechanical properties.

15.
Nanomaterials (Basel) ; 14(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38607174

RESUMEN

Diamond/aluminum composites have attracted significant attention as novel thermal management materials, with their interfacial bonding state and configuration playing a crucial role in determining their thermal conductivity and mechanical properties. The present work aims to evaluate the bending strength and thermal conductivity of CNT-modified Ti-coated diamond/aluminum composites with multi-scale structures. The Fe catalyst was encapsulated on the surface of Ti-coated diamond particles using the solution impregnation method, and CNTs were grown in situ on the surface of Ti-coated diamond particles using the plasma-enhanced chemical vapor deposition (PECVD) method. We investigated the influence of interface structure on the thermal conductivity and mechanical properties of diamond/aluminum composites. The results show that the CNT-modified Ti-coated diamond/aluminum composite exhibits excellent bending strength, reaching up to 281 MPa, compared to uncoated diamond/aluminum composites and Ti-coated diamond/aluminum composites. The selective bonding between diamond and aluminum was improved by the interfacial reaction between Ti and diamond particles, as well as between CNT and Al. This led to the enhanced mechanical properties of Ti-coated diamond/aluminum composites while maintaining acceptable thermal conductivity. This work provides insights into the interface's configuration design and the performance optimization of diamond/metal composites for thermal management.

16.
Med Eng Phys ; 126: 104129, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621834

RESUMEN

3D printed Poly Lactic Acid (PLA) bone plates exhibit limited three-point bending strength, restricting their viability in biomedical applications. The application of polydopamine (PDM) enhances the three-point bending strength by undergoing covalent interactions with PLA molecular structure. However, the heavy nature of PDM particles leads to settling at the container base at higher coating solution concentrations. This study investigates the impact of ultrasonic-assisted coating parameters on the three-point bending strength. Utilizing Response Surface Methodology (RSM) for statistical modeling, the study examines the influence of ultrasonic vibration power (UP), coating solution concentration (CC), and submersion time (TIME). RSM optimization recommended 100 % UP, 6 mg/ml CC, and 150 min TIME, resulting in maximum three-point bending strength of 83.295 MPa. Microscopic images from the comparative analysis revealed non-uniform coating deposition with mean thickness of 6.153 µm under normal coating. In contrast, ultrasonic-assisted coating promoted uniform deposition with mean thickness of 18.05 µm. The results demonstrate that ultrasonic-assisted coating induces PDM particle collision, preventing settling at the container base, and enhances three-point bending strength by 7.27 % to 23.24 % compared to the normal coating condition. This study emphasizes on the potential of ultrasonic-assisted coating to overcome the limitations of direct immersion coating technique.


Asunto(s)
Placas Óseas , Ultrasonido , Poliésteres/química , Ondas Ultrasónicas , Impresión Tridimensional
17.
Materials (Basel) ; 17(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611999

RESUMEN

In response to the rapid development of high-performance electronic devices, diamond/Al composites with high thermal conductivity (TC) have been considered as the latest generation of thermal management materials. This study involved the fabrication of diamond/Al composites reinforced with Ti-coated diamond particles using a liquid-solid separation (LSS) method. The interfacial characteristics of composites both without and with Ti coatings were evaluated using SEM, XRD, and EMPA. The results show that the LSS technology can fabricate diamond/Al composites without Al4C3, hence guaranteeing excellent mechanical and thermophysical properties. The higher TC of the diamond/Al composite with a Ti coating was attributed to the favorable metallurgical bonding interface compounds. Due to the non-wettability between diamond and Al, the TC of uncoated diamond particle-reinforced composites was only 149 W/m·K. The TC of Ti-coated composites increased by 85.9% to 277 W/m·K. A simultaneous comparison and analysis were performed on the features of composites reinforced by Ti and Cr coatings. The results suggest that the application of the Ti coating increases the bending strength of the composite, while the Cr coating enhances the TC of the composite. We calculate the theoretical TC of the diamond/Al composite by using the differential effective medium (DEM) and Maxwell prediction model and analyze the effect of Ti coating on the TC of the composite.

18.
MethodsX ; 12: 102562, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38292308

RESUMEN

Stalk lodging (structural failure crops prior to harvest) significantly reduces annual yields of vital grain crops. The lack of standardized, high throughput phenotyping methods capable of quantifying biomechanical plant traits prevents comprehensive understanding of the genetic architecture of stalk lodging resistance. A phenotyping pipeline developed to enable higher throughput biomechanical measurements of plant traits related to stalk lodging is presented. The methods were developed using principles from the fields of engineering mechanics and metrology and they enable retention of plant-specific data instead of averaging data across plots as is typical in most phenotyping studies. This pipeline was specifically designed to be implemented in large experimental studies and has been used to phenotype over 40,000 maize stalks. The pipeline includes both lab- and field-based phenotyping methodologies and enables the collection of metadata. Best practices learned by implementing this pipeline over the past three years are presented. The specific instruments (including model numbers and manufacturers) that work well for these methods are presented, however comparable instruments may be used in conjunction with these methods as seen fit.•Efficient methods to measure biomechanical traits and record metadata related to stalk lodging.•Can be used in studies with large sample sizes (i.e., > 1,000).

19.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000712

RESUMEN

Extruded polystyrene (XPS) is frequently used in the construction of many different structures. Therefore, it is necessary to appropriately characterize its mechanical properties to ensure the safety of said structures. Among the available characterization tests, static bending tests are simple and easy to perform; owing to these characteristics, they should be performed more frequently than other tests. In static bending tests on XPS, there are several challenges owing to the high flexibility of XPS, and the chosen testing method and sample configuration affect the accuracy of characterization. For cellular plastics, including XPS, three-point bending (TPB) test methods are standardized by the International Organization for Standardization (ISO) and Japanese Industrial Standards (JIS) as in ISO 1209-2:2007 and JIS K 7221-2:2006, respectively, where the sample configurations are determined. Therefore, TPB tests of cellular plastics have been conventionally performed based on these standardized methods to characterize the bending properties. In contrast, investigations on the effects of testing methods and sample configurations have often been neglected due to the existence of these standardized methods. However, to characterize the bending properties of XPS accurately, the effects of the testing method and sample configuration must be examined in detail. In this study, three bending properties (Young's modulus, proportional limit stress, and bending strength) of samples cut from an XPS panel were determined using three-point bending (TPB), four-point bending (FPB), and compression bending (CB) tests with varying sample span/depth ratios from 5 to 50 at intervals of 5, and statistical analyses were performed to determine the relevance of the tests. The effect of sample configuration on Young's modulus could be reduced when the span/depth ratio range was 25-50, 25-50, and 15-50 in the TPB, FPB, and CB tests, respectively, whereas that on the proportional limit stress was reduced in the span/depth ratio range of 5-50, 20-50, and 15-50 in the TPB, FPB, and CB tests, respectively. Additionally, the effect on the bending strength was reduced when the span/depth ratio range was 5-50, 20-50, and 5-50 in the TPB, FPB, and CB tests, respectively. Therefore, these results suggest that the TPB and CB tests were more feasible than the FPB test when the span/depth ratio was determined as being 25-50 and 15-50, respectively. However, clear differences were observed in the sample bending properties determined in these tests. In light of these findings, further studies should be conducted to elucidate these differences.

20.
Materials (Basel) ; 17(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276452

RESUMEN

In this study, alder, spruce, and beech woods were used for homogeneous symmetric, inhomogeneous symmetric (combined) and inhomogeneous non-symmetric glued laminated timber (glulam) beams glued with resorcinol phenol formaldehyde (RPF) adhesive. The aim of this paper is to determine and compare the modulus of elasticity of glulam beams using three methods, i.e., analytical calculation, numerical model (FEM) and experimental testing. As an additional characteristic, the bending strength (MOR) of the beams was determined during experimental testing. Analytical calculation was used to calculate the modulus of elasticity (MOE) of glued laminated timber based on the knowledge of the modulus of elasticity of solid wood and to estimate the location of the neutral axis during bending. According to calculations, for symmetrical combinations, the deviation from the real neutral axis does not exceed 5%. In the case of the modulus of elasticity, the deviation is an average of 4.1% from that of the actual measured beams. The numerical model includes finite element modelling, where the deflection of the modelled beams can be calculated with a deviation of up to 10%. The last method was experimental testing of glued beams using four-point bending, in which, among homogeneous beams, beech glulam beams achieved the highest MOE and MOR, while alder glulam beams achieved the lowest. The combination of wood species resulted in an increase in both MOE and MOR compared to homogeneous spruce and alder beams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA