Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.720
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 349-73, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27294440

RESUMEN

The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.


Asunto(s)
Técnicas Biosensibles , ARN Polimerasas Dirigidas por ADN/ultraestructura , ADN/ultraestructura , Imagen Molecular/métodos , Nanotecnología/métodos , ARN/ultraestructura , Aptámeros de Nucleótidos/química , Emparejamiento Base , ADN/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Hibridación Fluorescente in Situ , Microscopía de Fuerza Atómica , Nanoestructuras/química , Nanotecnología/instrumentación , Conformación de Ácido Nucleico , ARN/química , Spinacia oleracea/química
2.
Proc Natl Acad Sci U S A ; 121(41): e2406358121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39356665

RESUMEN

Bioluminescence imaging has become a valuable tool in biological research, offering several advantages over fluorescence-based techniques, including the absence of phototoxicity and photobleaching, along with a higher signal-to-noise ratio. Common bioluminescence imaging methods often require the addition of an external chemical substrate (luciferin), which can result in a decrease in luminescence intensity over time and limit prolonged observations. Since the bacterial bioluminescence system is genetically encoded for luciferase-luciferin production, it enables autonomous bioluminescence (auto-bioluminescence) imaging. However, its application to multiple reporters is restricted due to a limited range of color variants. Here, we report five-color auto-bioluminescence system named Nano-lanternX (NLX), which can be expressed in bacterial, mammalian, and plant hosts, thereby enabling auto-bioluminescence in various living organisms. Utilizing spectral unmixing, we achieved the successful observation of multicolor auto-bioluminescence, enabling detailed single-cell imaging across both bacterial and mammalian cells. We have also expanded the applications of the NLX system, such as multiplexed auto-bioluminescence imaging for gene expression, protein localization, and dynamics of biomolecules within living mammalian cells.


Asunto(s)
Mediciones Luminiscentes , Mediciones Luminiscentes/métodos , Humanos , Animales , Luminiscencia , Escherichia coli/metabolismo , Escherichia coli/genética , Luciferasas/metabolismo , Luciferasas/genética , Bacterias/metabolismo , Bacterias/genética
3.
Proc Natl Acad Sci U S A ; 120(8): e2205186120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787363

RESUMEN

Chemiluminescence (CL) with the elimination of excitation light and minimal autofluorescence interference has been wieldy applied in biosensing and bioimaging. However, the traditional emission of CL probes was mainly in the range of 400 to 650 nm, leading to undesired resolution and penetration in a biological object. Therefore, it was urgent to develop CL molecules in the near-infrared window [NIR, including NIR-I (650 to 900 nm) and near-infrared-II (900 to 1,700 nm)], coupled with unique advantages of long-time imaging, sensitive response, and high resolution at depths of millimeters. However, no NIR-II CL unimolecular probe has been reported until now. Herein, we developed an H2S-activated NIR-II CL probe [chemiluminiscence donor 950, (CD-950)] by covalently connecting two Schaap's dioxetane donors with high chemical energy to a NIR-II fluorophore acceptor candidate via intramolecular CL resonance energy transfer strategy, thereby achieving high efficiency of 95%. CD-950 exhibited superior capacity including long-duration imaging (~60 min), deeper tissue penetration (~10 mm), and specific H2S response under physiological conditions. More importantly, CD-950 showed detection capability for metformin-induced hepatotoxicity with 2.5-fold higher signal-to-background ratios than that of NIR-II fluorescence mode. The unimolecular NIR-II CL probe holds great potential for the evaluation of drug-induced side effects by tracking its metabolites in vivo, further facilitating the rational design of novel NIR-II CL-based detection platforms.


Asunto(s)
Luminiscencia , Sondas Moleculares , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos
4.
J Pathol ; 263(1): 5-7, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38404051

RESUMEN

Advances in the digital pathology field have facilitated the characterization of histology samples for both clinical and preclinical research. However, uncovering subtle correlations between bioimaging, clinical and molecular parameters requires extensive statistical analysis. As a user-friendly software, Hourglass, simplifies multiparametric dataset analysis through intuitive data visualization and statistical tools. Systemic analysis of interleukin-6 (IL-6)/pStat3 signaling pathway through Hourglass revealed differences in regional immune cell composition within tumors. Moreover, these regional disparities were partially mediated by sex. Overall, Hourglass simplifies information extraction from complex datasets, resolving overlooked regional and global spatial tumor differences. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Transducción de Señal , Programas Informáticos , Reino Unido
5.
Methods ; 221: 1-11, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000523

RESUMEN

A chromone-based ratiometric fluorescent probe L2 was developed for the selective detection of Hg(II) in a semi-aqueous solution based on aggregation-induced emission (AIE) and chelation-enhanced fluorescence (CHEF) effect. The probe L2 fluoresced significantly at 498 nm in its aggregated state, and when chelated with Hg(II), the soluble state fluoresced 1-fold higher. In addition, Job's plot reveals that the probe forms a 1:1 stoichiometry complex with Hg(II) with an association constant of 9.10 × 103M-1 estimated by the BH plot. The probe L2 detects Hg(II) down to 22.47 nM without interference from other interfering ions. The FTIR, ESI mass, and DFT-based computational studies investigated the binding mechanism of probe L2 with Hg(II). Taking advantage of its AIE characteristics, the probe L2 was successfully applied for bio-capability analysis in Caenorhabditis elegans (a nematode worm) imaging of Hg(II) in a living model.


Asunto(s)
Caenorhabditis elegans , Mercurio , Animales , Mercurio/análisis , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Imagen Óptica/métodos
6.
Methods ; 223: 35-44, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228195

RESUMEN

A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.


Asunto(s)
Compuestos de Boro , Mercurio , Quinolinas , Colorantes , Iones
7.
Methods ; 221: 27-34, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008345

RESUMEN

At this "Aluminum Age", exposure to aluminum (metallic or ionic form) is inevitable and inestimable. The presence of aluminum in biological systems is evident but more often aluminum toxicity is less understood. Therefore, the presence of biologically reactive aluminum needs to be identified and quantified. Alongside metals, L-cysteine, an essential amino acid, plays a pivotal role in the homeostasis of cellular oxidative and reductive stress. However, excess (<7g) could be lethal and can lead to death. Thus, in-situ selective detection of aluminum and L-cysteine is of larger interest. Here we report a fluorogenic probe (R) for the sequential selective detection and quantification of Al3+ and L-cysteine in a semi-aqueous medium (3:7; water: DMSO). The probe (R) was synthesized by a one-step acid-mediated condensation reaction between pyridine-3,4-diamine and 2-hydroxy-1-napthaldehyde. The synthesized probe was characterized using 1H and 13C NMR, and HR-Mass spectroscopic techniques. The probe (R) is non-emissive in nature, but on recognition of Al3+, the probe R showed "turn-on" emission (bright yellow colour) showing two emission maxima (522 nm and 547 nm), and no naked eye observable color change. Other competing cations do not show any noticeable fluorescence outcome. The R + Al3+ ensemble can specifically detect L-cysteine among all the essential amino acids by showing a fluorescence "turn-off" response. The sensing mechanism of Al3+ is obeying the chelation-enhanced fluorescence (CHEF) effect. The binding constant of R + Al3+ is 0.3 × 104 M-1. The limit of detection (LoD) for Al3+ and L-cysteine are 2.02 × 10-7 M and 0.5 × 10-5 M respectively. The probe (R) can show maximum efficiency within the pH range (7.0-10.0). The probe is found non-toxic (>80 % cell viability with 15 µM concentration) and employed for the in-vitro fluorescence imaging in the HeLa cell.


Asunto(s)
Cisteína , Colorantes Fluorescentes , Humanos , Células HeLa , Colorantes Fluorescentes/química , Aluminio/química , Cationes , Agua/química , Espectrometría de Fluorescencia/métodos
8.
Nano Lett ; 24(27): 8232-8239, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38781101

RESUMEN

Biocompatible fluorescent agents are key contributors to the theranostic paradigm by enabling real-time in vivo imaging. This study explores the optical properties of phenylenediamine carbon dots (CDs) and demonstrates their potential for fluorescence imaging in cells and brain blood vessels. The nonlinear absorption cross-section of the CDs was measured and achieved values near 50 Goeppert-Mayer (GM) units with efficient excitation in the 775-895 nm spectral range. Mesoporous vaterite nanoparticles were loaded with CDs to examine the possibility of a biocompatible imaging platform. Efficient one- and two-photon imaging of the CD-vaterite composites uptaken by diverse cells was demonstrated. For an in vivo scenario, CD-vaterite composites were injected into the bloodstream of a mouse, and their flow was monitored within the blood vessels of the brain through a cranial window. These results show the potential of the platform for high-brightness biocompatible imaging with the potential for both sensing and simultaneous drug delivery.


Asunto(s)
Encéfalo , Carbono , Puntos Cuánticos , Animales , Carbono/química , Ratones , Encéfalo/diagnóstico por imagen , Puntos Cuánticos/química , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Carbonato de Calcio/química , Humanos , Nanopartículas/química , Colorantes Fluorescentes/química
9.
Nano Lett ; 24(37): 11738-11746, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229926

RESUMEN

Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.


Asunto(s)
Fluoruros , Hafnio , Circonio , Circonio/química , Humanos , Hafnio/química , Fluoruros/química , Nanopartículas/química , Tomografía Computarizada por Rayos X/métodos , Animales , Medios de Contraste/química
10.
Antimicrob Agents Chemother ; : e0079324, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254294

RESUMEN

Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be capable of killing parasites in their liver and blood stage forms, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis, as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits; both of which are parasite-specific quinoline-4-carboxamides, and analogs of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for the specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing the identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA